
9-1

ECE 424 Design of Microprocessor-Based Systems

Haibo Wang

ECE Department

Southern Illinois University

Carbondale, IL 62901

80x86 Instructions

Part 2

9-2

Arithmetic Instructions

 ADD Destination, Source

— Destination + Source  Destination

— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

 ADC Destination, Source

— Destination + Source + Carry Flag  Destination

— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

 INC Destination

— Destination + 1  Destination

— It modifies flags AF OF PF SF ZF (Note CF will not be changed)

 DEC Destination

— Destination - 1  Destination

— It modifies flags AF OF PF SF ZF (Note CF will not be changed)

9-3

Arithmetic Instructions

 SUB Destination, Source
— Destination - Source  Destination

— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

 SBB Destination, Source

— Destination - Source - Carry Flag  Destination

— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

 CMP Destination, Source

— Destination – Source (the result is not stored anywhere)

— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF (if ZF is set, destination = source)

9-4

Arithmetic Instructions

 MUL Source

— Perform unsigned multiply operation

— If source operand is a byte, AX = AL * Source

— If source operand is a word, (DX AX) = AX * Source

— Source operands can not be an immediate data

— It modifies CF and OF (AF,PF,SF,ZF undefined)

 IMUL Source

— Perform signed binary multiply operation

— If source operand is a byte, AX = AL * Source

— If source operand is a word, (DX AX) = AX * Source

— Source operands can not be an immediate data

— It modifies CF and OF (AF,PF,SF,ZF undefined)

 Examples:
MOV AL, 20H

MOV CL, 80H

MUL CL

MOV AL, 20H

MOV CL, 80H

IMUL CL

9-5

 DIV Source

— Perform unsigned division operation

— If source operand is a byte, AL = AX / Source; AH = Remainder of AX / Source

— If source operand is a word, AX=(DX AX)/Source; DX=Remainder of (DX AX)/Source

— Source operands can not be an immediate data

 IDIV Source

 Examples:
MOV AX, 5

MOV BL, 2

DIV BL

MOV AL, -5

MOV BL, 2

IDIV BL

Arithmetic Instructions

— Perform signed division operation

— If source operand is a byte, AL = AX / Source; AH = Remainder of AX / Source

— If source operand is a word, AX=(DX AX)/Source; DX=Remainder of (DX AX)/Source

— Source operands can not be an immediate data

9-6

Arithmetic Instructions

 NEG Destination

— 0 – Destination  Destination (the result is represented in 2’s complement)

— Destination can be a register or a memory location

— It modifies flags AF CF OF PF SF ZF

 CBW
— Extends a signed 8-bit number in AL to a signed 16-bit data and stores it into AX

— It does not modify flags

 CWD

— Extends a signed 16-bit number in AX to a signed 32-bit data and stores it into DX

and AX. DX contains the most significant word

— It does not modify flags

 Other arithmetic instructions:

DAA, DAS, AAA, AAS, AAM, AAD

9-7

Logical Instructions

 NOT Destination

— Inverts each bit of the destination operand

— Destination can be a register or a memory location

— It does not modify flags

 AND Destination, Source

— Performs logic AND operation for each bit of the destination and source; stores the

result into destination

— Destination and source can not be both memory locations at the same time

— It modifies flags: CF OF PF SF ZF

 OR Destination, Source

— Performs logic OR operation for each bit of the destination and source; stores the

result into destination

— Destination and source can not be both memory locations at the same time

— It modifies flags: CF OF PF SF ZF

9-8

Logical Instructions

 XOR Destination, Source

— Performs logic XOR operation for each bit of the destination and source; stores the

result into destination

— Destination and source can not be both memory locations at the same time

— It modifies flags: CF OF PF SF ZF

 TEST Destination, Source

— Performs logic AND operation for each bit of the destination and source

— Updates Flags depending on the result of AND operation

— Do not store the result of AND operation anywhere

9-9

Bit Manipulation Instructions

 SHL(SAL) Destination, Count
— Left shift destination bits; the number of bits shifted is given by operand Count

— During the shift operation, the MSB of the destination is shifted into CF and

zero is shifted into the LSB of the destination

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF OF PF SF ZF

CF 0

 SHR Destination, Count
— Right shift destination bits; the number of bits shifted is given by operand Count

— During the shift operation, the LSB of the destination is shifted into CF and

zero is shifted into the MSB of the destination

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF OF PF SF ZF

CF0 Destination

Destination

LSBMSB

LSBMSB

9-10

Bit Manipulation Instructions

 SAR Destination, Count

— Right shift destination bits; the number of bits shifted is given by operand Count

— The LSB of the destination is shifted into CF and the MSB of the destination remians

the same

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF PF SF ZF

CFDestination

LSBMSB

9-11

Bit Manipulation Instructions

 ROL Destination, Count

— Left shift destination bits; the number of bits shifted is given by operand Count

— The MSB of the destination is shifted into CF, it also goes to the LSB of the destination

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF OF

CF Destination

 ROR Destination, Count

— Right shift destination bits; the number of bits shifted is given by operand Count

— The LSB of the destination is shifted into CF, it also goes to the MSB of the destination

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF OF

CFDestination

LSBMSB

LSBMSB

9-12

Bit Manipulation Instructions

 RCL Destination, Count

— Left shift destination bits; the number of bits shifted is given by operand Count

— The MSB of the destination is shifted into CF; the old CF value goes to the LSB

of the destination

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF OF PF SF ZF
CF Destination

 RCR Destination, Count

— Right shift destination bits; the number of bits shifted is given by operand Count

— The LSB of the destination is shifted into CF, the old CF value goes to the MSB

of the destination

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF OF PF SF ZF

CFDestination

LSBMSB

LSBMSB

9-13

Program Transfer Instructions

 JMP Target

— Unconditional jump

— It moves microprocessor to execute another part of the program

— Target can be represented by a label, immediate data, registers, or memory locations

— It does not affect flags

 The execution of JMP instruction

JMP 1234H : 2000H

CS

IP

1234H

2000H

14340H
Next Instruction

Address

JMP

Current

instruction

Next

instruction

Jump

9-14

Program Transfer Instructions

 Intrasegment transfer v.s. Intersegment transfer

— Intrasegment transfer: the microprocessor jumps to an address within the same segment

— Intersegment transfer: the microprocessor jumps to an address in a difference segment

— Use assembler directive near and far to indicate the types of JMP instructions

— For intrasegment transfer, we can provide only new IP value in JMP instructions.

For Example: JMP 1000H

— For intersegment transfer, we need provide both new CS and IP values in JMP instructions

For Example: JMP 2000H : 1000H

 Direct Jump v.s. Indirect Jump

— Direct Jump: the target address is directly given in the instruction

— Indirect Jump: the target address is contained in a register or memory location

 Short Jump

— If the target address is within +127 or –128 bytes of the current instruction address,

the jump is called a short jump

— For short jumps, instead of specifying the target address, we can specify the relative

offset (the distance between the current address and the target address) in JMP instructions.

9-15

Program Transfer Instructions

 Conditional Jumps

 JZ: Label_1

— If ZF =1, jump to the target address labeled by Label_1; otherwise, do not jump

 JNZ: Label_1

— If ZF =0, jump to the target address labeled by Label_1; otherwise, do not jump

 Other Conditional Jumps

JNC JAE JNB JC JB JNAE JNG

JNE JE JNS JS JNO JO JNP

JPO JP JPE JA JBNE JBE JNA

JGE JNL JL JNGE JG JNLE JLE

 JCXZ: Label_1

— If CX =0, jump to the target address labeled by Label_1; otherwise, do not jump

9-16

Program Transfer Instructions

 LOOP Short_Label
— It is limited for short jump

— Execution Flow:

CX = CX –1

If CX != 0 Then

JMP Short_Label

End IF

 LOOPE/LOOPZ Short_Label

CX = CX –1

If CX != 0 & ZF=1 Then

JMP Short_Label

End IF

 LOOPNE/LOOPNZ Short_Label

CX = CX –1

If CX != 0 & ZF=0 Then

JMP Short_Label

End IF

9-17

Processor Control Instructions

 CLC Clear carry flag

 STC Set carry flag

 CMC Complement carry flag

 CLD Clear direction flag

 STD Set direction flag

 CLI Clear interrupt-enable flag

 STI Set interrupt-enable flag

 HLT Halt microprocessor operation

 NOP No operation

 LOCK Lock Bus During Next Instruction

