ECE 424 Design of Microprocessor-Based Systems

80x86 Instructions

Part 2

Haibo Wang
ECE Department
Southern Illinois University
Carbondale, IL 62901

9-1



Arithmetic Instructions

ADD Destination, Source

— Destination + Source - Destination
— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

ADC Destination, Source

— Destination + Source + Carry Flag = Destination
— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

INC Destination

— Destination + 1 = Destination

— It modifies flags AF OF PF SF ZF (Note CF will not be changed)
DEC Destination

— Destination - 1 = Destination

— It modifies flags AF OF PF SF ZF (Note CF will not be changed)
9-2



Arithmetic Instructions

Q SUB Destination, Source
— Destination - Source - Destination
— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

Q SBB Destination, Source

— Destination - Source - Carry Flag = Destination
— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF

Q CMP Destination, Source

— Destination — Source (the result is not stored anywhere)
— Destination and Source operands can not be memory locations at the same time

— It modifies flags AF CF OF PF SF ZF (if ZF is set, destination = source)

9-3



Arithmetic Instructions

O MUL Source

— Perform unsigned multiply operation

— If source operand is a byte, AX = AL * Source

— If source operand is a word, (DX AX) = AX * Source
— Source operands can not be an immediate data

— It modifies CF and OF (AF,PF,SF,ZF undefined)

O IMUL Source

— Perform signed binary multiply operation

— If source operand is a byte, AX =AL * Source

— If source operand is a word, (DX AX) = AX * Source
— Source operands can not be an immediate data

— It modifies CF and OF (AF,PF,SF,ZF undefined)

» Examples:

MOV AL, 20H MOV AL, 20H
MOV CL, 80H MOV CL, 80H
MUL CL IMUL CL



Arithmetic Instructions

O DIV Source

— Perform unsigned division operation
— If source operand is a byte, AL =AX/ Source; AH = Remainder of AX / Source

— If source operand is a word, AX=(DX AX)/Source; DX=Remainder of (DX AX)/Source
— Source operands can not be an immediate data

Q IDIV Source

— Perform signed division operation
— If source operand is a byte, AL =AX/ Source; AH = Remainder of AX / Source

— If source operand is a word, AX=(DX AX)/Source; DX=Remainder of (DX AX)/Source
— Source operands can not be an immediate data

» Examples:
MOV AX, 5 MOV AL, -5
MOV BL, 2 MOV BL, 2
DIV BL IDIV BL

9-5



Arithmetic Instructions

O NEG Destination

— 0 — Destination - Destination (the result is represented in 2°s complement)
— Destination can be a register or a memory location
— It modifies flags AF CF OF PF SF ZF

O CBW

— Extends a signed 8-bit number in AL to a signed 16-bit data and stores it into AX
— It does not modify flags

0 CWD

— Extends a signed 16-bit number in AX to a signed 32-bit data and stores it into DX
and AX. DX contains the most significant word
— It does not modify flags

+» Other arithmetic instructions:

DAA, DAS, AAA, AAS, AAM, AAD

9-6



Logical Instructions

O NOT Destination

— Inverts each bit of the destination operand
— Destination can be a register or a memory location
— It does not modify flags

O AND Destination, Source

— Performs logic AND operation for each bit of the destination and source; stores the
result into destination

— Destination and source can not be both memory locations at the same time

— It modifies flags: CF OF PF SF ZF

O OR Destination, Source

— Performs logic OR operation for each bit of the destination and source; stores the
result into destination

— Destination and source can not be both memory locations at the same time

— It modifies flags: CF OF PF SF ZF

9-7



Logical Instructions

O XOR Destination, Source

— Performs logic XOR operation for each bit of the destination and source; stores the
result into destination

— Destination and source can not be both memory locations at the same time
— It modifies flags: CF OF PF SF ZF

Q TEST Destination, Source

— Performs logic AND operation for each bit of the destination and source
— Updates Flags depending on the result of AND operation
— Do not store the result of AND operation anywhere

9-8



Bit Manipulation Instructions

Q SHL(SAL) Destination, Count
— Left shift destination bits; the number of bits shifted is given by operand Count
— During the shift operation, the MSB of the destination is shifted into CF and
zero is shifted into the LSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF PF SF ZF

CF [« Destination «— 0

MSB LSB

Q SHR Destination, Count
— Right shift destination bits; the number of bits shifted is given by operand Count
— During the shift operation, the LSB of the destination is shifted into CF and
zero is shifted into the MSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF PF SF ZF

A 4

0 — Destination CF

MSB LSB



Bit Manipulation Instructions

O SAR Destination, Count

— Right shift destination bits; the number of bits shifted is given by operand Count

— The LSB of the destination is shifted into CF and the MSB of the destination remians
the same

— Operand Count can be either an immediate data or register CL

— Destination can be a register or a memory location

— It modifies flags: CF PF SF ZF

]
> Destination

A 4

CF

MSB LSB

9-10



Bit Manipulation Instructions

O ROL Destination, Count

— Left shift destination bits; the number of bits shifted is given by operand Count

— The MSB of the destination is shifted into CF, it also goes to the LSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location

— It modifies flags: CF OF

O ROR Destination, Count

— Right shift destination bits; the number of bits shifted is given by operand Count

— The LSB of the destination is shifted into CF, it also goes to the MSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location

— It modifies flags: CF OF

MSB

LSB

CF

MSB

LSB

Destination

A

Destination

A

A 4

CF

9-11



Bit Manipulation Instructions

O RCL Destination, Count

— Left shift destination bits; the number of bits shifted is given by operand Count
— The MSB of the destination is shifted into CF; the old CF value goes to the LSB

of the destination

— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location

— It modifies flags: CF OF

PF SF ZF

Q RCR Destination, Count

— Right shift destination bits; the number of bits shifted is given by operand Count
— The LSB of the destination is shifted into CF, the old CF value goes to the MSB

of the destination

P
<«

P
<«

MSB

LSB

CF

Destination

A

— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location

— It modifies flags: CF OF
MSB

PF SF ZF

LSB

Destination

A 4

CF

v

9-12



Program Transfer Instructions

Q JMP Target

> The execution of JMP instruction

Unconditional jump

It moves microprocessor to execute another part of the program
Target can be represented by a label, immediate data, registers, or memory locations

It does not affect flags

JMP 1234H : 2000H

v

1234H

Next Instruction

v

CS

2000H

Address

v

14340H

Current

Instruction
— JMP

Jump

—

Next
instruction

9-13



Program Transfer Instructions

> Intrasegment transfer v.s. Intersegment transfer

— Intrasegment transfer: the microprocessor jumps to an address within the same segment
— Intersegment transfer: the microprocessor jumps to an address in a difference segment
— Use assembler directive near and far to indicate the types of JMP instructions

— For intrasegment transfer, we can provide only new IP value in JMP instructions.
For Example: JMP 1000H

— For intersegment transfer, we need provide both new CS and IP values in JMP instructions
For Example: JMP 2000H : 1000H

» Direct Jump v.s. Indirect Jump

— Direct Jump: the target address is directly given in the instruction

— Indirect Jump: the target address is contained in a register or memory location
» Short Jump

— If the target address is within +127 or —128 bytes of the current instruction address,
the jump is called a short jump
— For short jJumps, instead of specifying the target address, we can specify the relative
offset (the distance between the current address and the target address) in JMP instructions.

9-14



Program Transfer Instructions

» Conditional Jumps
mJZ: Label 1

— If ZF =1, jump to the target address labeled by Label 1, otherwise, do not jump

= INZ: Label 1

— If ZF =0, jump to the target address labeled by Label 1, otherwise, do not jJump

» Other Conditional Jumps

JNC JAE
JNE JE
JPO JP
JGE JNL

» JCXZ: Label 1

JNB
JNS
JPE
JL

JC
JS
JA
JNGE

JB
JNO
JBNE
JG

JNAE
JO
JBE
JNLE

ING
JNP
JNA
JLE

— If CX =0, jump to the target address labeled by Label 1, otherwise, do not jump

9-15



Program Transfer Instructions

Q LOOP Short Label

— It is limited for short jump
— Execution Flow:

CX=CX-1

If CX1=0 Then
JMP Short Label

End IF

QO LOOPE/LOOPZ Short Label

CX=CX-1

If CX1=0& ZF=1 Then
JMP Short Label

End IF

O LOOPNE/LOOPNZ Short Label

CX=CX-1
If CX 1=0& ZF=0 Then
JMP Short_Label
End IF 0-16



o0 0 00 OO0 0 00

CLC
STC

CMC
CLD
STD

CLI
STI

HLT

NOP
LOCK

Processor Control Instructions

Clear carry flag
Set carry flag

Complement carry flag
Clear direction flag

Set direction flag

Clear interrupt-enable flag
Set interrupt-enable flag

Halt microprocessor operation

No operation

Lock Bus During Next Instruction

9-17



