
8-1

ECE 424 Design of Microprocessor-Based Systems

Haibo Wang

ECE Department

Southern Illinois University

Carbondale, IL 62901

80x86 Instructions

Part 1

8-2

Instruction Types

 Data transfer instructions

 String instructions

Arithmetic instructions

 Bit manipulation instructions

 Loop and jump instructions

 Subroutine and interrupt instructions

 Processor control instructions

An excellent website about 80x86 instruction set: http://www.penguin.cz/~literakl/intel/intel.html

Another good reference is in the tutorial of 8086 emulator

http://www.penguin.cz/~literakl/intel/intel.html

8-3

Addressing Modes

 Immediate addressing MOV AL, 12H

 Register addressing MOV AL, BL

 Direct addressing MOV [500H], AL

 Register Indirect addressing MOV DL, [SI]

 Based addressing MOV AX, [BX+4]

 Indexed addressing MOV [DI-8], BL

 Based indexed addressing MOV [BP+SI], AH

 Based indexed with displacement addressing MOV CL, [BX+DI+2]

Exceptions

 String addressing

 Port addressing (e.g. IN AL, 79H)

Addressing Modes Examples

8-4

Flag Register

 NT IOPL OF DF IF TF ZFSF AF PF CF

015

 Control Flags Status Flags

IF: Interrupt enable flag

DF: Direction flag

TF: Trap flag

CF: Carry flag

PF: Parity flag

AF: Auxiliary carry flag

ZF: Zero flag

SF: Sign flag

OF: Overflow flag

NT: Nested task flag

IOPL: Input/output privilege level

 Flag register contains information reflecting the current status of a

microprocessor. It also contains information which controls the

operation of the microprocessor.

8-5

Flags Commonly Tested During the Execution of

Instructions

 There are five flag bits that are commonly tested during the execution

of instructions

 Sign Flag (Bit 7), SF: 0 for positive number and 1 for negative number

 Zero Flag (Bit 6), ZF: If the ALU output is 0, this bit is set (1); otherwise,

it is 0

 Carry Flag (Bit 0), CF: It contains the carry generated during the execution

 Auxiliary Carry, AF: Depending on the width of ALU inputs, this flag

(Bit 4) bit contains the carry generated at bit 3 (or, 7, 15)

of the 8088 ALU

 Parity Flag (bit2), PF: It is set (1) if the output of the ALU has even number

of ones; otherwise it is zero

8-6

Data Transfer Instructions

 MOV Destination, Source

— Move data from source to destination; e.g. MOV [DI+100H], AH

 For 80x86 family, directly moving data from one memory location to

another memory location is not allowed

MOV [SI], [5000H]

 When the size of data is not clear, assembler directives are used

MOV [SI], 0

 BYTE PTR MOV BYTE PTR [SI], 12H

 WORD PTR MOV WORD PTR [SI], 12H

 DWORD PTR MOV DWORD PTR [SI], 12H

— It does not modify flags

You can not move an immediate data to segment register by MOV

MOV DS, 1234H

8-7

Instructions for Stack Operations

 What is a Stack ?

—A stack is a collection of memory locations. It always follows the rule of

last-in-firs-out

— Generally, SS and SP are used to trace where is the latest date written into stack

 PUSH Source

— Push data (word) onto stack

— It does not modify flags

— For Example: PUSH AX (assume ax=1234H, SS=1000H, SP=2000H

before PUSH AX)

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

??

??

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

12

34

??

SS:SP

SS:SP

Before PUSH AX, SP = 2000H After PUSH AX, SP = 1FFEH AX

12 34

 Decrementing the stack pointer during a push is a standard way of implementing stacks in hardware

8-8

Instructions for Stack Operations

 PUSHF

— Push the values of the flag register onto stack

— It does not modify flags

 POP Destination

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

SP

SP

Before POP, SP = 1FFEH After POP AX, SP = 2000H AX

12 34

— Pop word off stack

— It does not modify flags

— For example: POP AX

 POPF

— Pop word from the stack to the flag register

— It modifies all flags

8-9

Data Transfer Instructions

 SAHF

 LAHF

— Store data in AH to the low 8 bits of the flag register

— It modifies flags: AF, CF, PF, SF, ZF

— Copies bits 0-7 of the flags register into AH

— It does not modify flags

 LDS Destination Source

— Load 4-byte data (pointer) in memory to two 16-bit registers

— Source operand gives the memory location

— The first two bytes are copied to the register specified in the destination operand;

the second two bytes are copied to register DS

— It does not modify flags

 LES Destination Source

— It is identical to LDS except that the second two bytes are copied to ES

— It does not modify flags

8-10

Data Transfer Instructions

 LEA Destination Source

— Transfers the offset address of source (must be a memory location) to the

destination register

— It does not modify flags

 XCHG Destination Source

— It exchanges the content of destination and source

— One operand must be a microprocessor register, the other one can be a register

or a memory location

— It does not modify flags

 XLAT

— Replace the data in AL with a data in a user defined look-up table

— BX stores the beginning address of the table

— At the beginning of the execution, the number in AL is used as the

index of the look-up table

— It does not modify flags

8-11

String Instructions

 String is a collection of bytes, words, or long-words that can be up to 64KB

in length

 String instructions can have at most two operands. One is referred to as source

string and the other one is called destination string

— Source string must locate in Data Segment and SI register points to the current

element of the source string

— Destination string must locate in Extra Segment and DI register points to the current

element of the destination string

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

53

48

4F

50

50

49

S

H

O

P
P

4E

I

N

02A8:2000

02A8:2001

02A8:2002

02A8:2003

02A8:2004

02A8:2005

02A8:2006

DS : SI ES : DI

Source String Destination String

8-12

Repeat Prefix Instructions

 REP String Instruction

— The prefix instruction makes the microprocessor repeatedly execute the string instruction

until CX decrements to 0 (During the execution, CX is decreased by one when the string

instruction is executed one time).

— For Example:

MOV CX, 5

REP MOVSB

By the above two instructions, the microprocessor will execute MOVSB 5 times.

— Execution flow of REP MOVSB::

While (CX!=0)

{

CX = CX –1;

MOVSB;

}

Check_CX: If CX!=0 Then

CX = CX –1;

MOVSB;

goto Check_CX;

end if

OR

8-13

Repeat Prefix Instructions

 REPZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is set

 REPE String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNE String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is set

8-14

Direction Flag

 Direction Flag (DF) is used to control the way SI and DI are adjusted during the

execution of a string instruction

— DF=0, SI and DI will auto-increment during the execution; otherwise, SI and DI

auto-decrement

— Instruction to set DF: STD; Instruction to clear DF: CLD

— Example:

CLD

MOV CX, 5

REP MOVSB

At the beginning of execution,

DS=0510H and SI=0000H

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

DS : SI

Source String

SI CX=5

SI CX=4

SI CX=3

SI CX=2

SI CX=1

SI CX=0

8-15

String Instructions

 MOVSB (MOVSW)

— Move byte (word) at memory location DS:SI to memory location ES:DI and

update SI and DI according to DF and the width of the data being transferred

— It does not modify flags

—Example:

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

0300:0100

DS : SI ES : DI

Source String Destination String

MOV AX, 0510H

MOV DS, AX

MOV SI, 0

MOV AX, 0300H

MOV ES, AX

MOV DI, 100H

CLD

MOV CX, 5

REP MOVSB

8-16

String Instructions

 CMPSB (CMPSW)

— Compare bytes (words) at memory locations DS:SI and ES:DI;

update SI and DI according to DF and the width of the data being compared

— It modifies flags

—Example:

Assume: ES = 02A8H

DI = 2000H

DS = 0510H

SI = 0000H

CLD

MOV CX, 9

REPZ CMPSB

What’s the values of CX after

The execution?

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

02A8:2000

DS : SI
ES : DI

Source String Destination String

02A8:2001

02A8:2002

02A8:2003

02A8:2004

02A8:2005

02A8:2006

53

48

4F

50

50

49

S

H

O

P
P

4E

I

N

8-17

String Instructions

 SCASB (SCASW)

— Move byte (word) in AL (AX) and at memory location ES:DI;

update DI according to DF and the width of the data being compared

— It modifies flags

 LODSB (LODSW)

— Load byte (word) at memory location DS:SI to AL (AX);

update SI according to DF and the width of the data being transferred

— It does not modify flags

 STOSB (STOSW)

— Store byte (word) at in AL (AX) to memory location ES:DI;

update DI according to DF and the width of the data being transferred

— It does not modify flags

