
8-1

ECE 424 Design of Microprocessor-Based Systems

Haibo Wang

ECE Department

Southern Illinois University

Carbondale, IL 62901

80x86 Instructions

Part 1

8-2

Instruction Types

 Data transfer instructions

 String instructions

Arithmetic instructions

 Bit manipulation instructions

 Loop and jump instructions

 Subroutine and interrupt instructions

 Processor control instructions

An excellent website about 80x86 instruction set: http://www.penguin.cz/~literakl/intel/intel.html

Another good reference is in the tutorial of 8086 emulator

http://www.penguin.cz/~literakl/intel/intel.html

8-3

Addressing Modes

 Immediate addressing MOV AL, 12H

 Register addressing MOV AL, BL

 Direct addressing MOV [500H], AL

 Register Indirect addressing MOV DL, [SI]

 Based addressing MOV AX, [BX+4]

 Indexed addressing MOV [DI-8], BL

 Based indexed addressing MOV [BP+SI], AH

 Based indexed with displacement addressing MOV CL, [BX+DI+2]

Exceptions

 String addressing

 Port addressing (e.g. IN AL, 79H)

Addressing Modes Examples

8-4

Flag Register

 NT IOPL OF DF IF TF ZFSF  AF PF CF 

015

 Control Flags  Status Flags

IF: Interrupt enable flag

DF: Direction flag

TF: Trap flag

CF: Carry flag

PF: Parity flag

AF: Auxiliary carry flag

ZF: Zero flag

SF: Sign flag

OF: Overflow flag

NT: Nested task flag

IOPL: Input/output privilege level

 Flag register contains information reflecting the current status of a

microprocessor. It also contains information which controls the

operation of the microprocessor.

8-5

Flags Commonly Tested During the Execution of

Instructions

 There are five flag bits that are commonly tested during the execution

of instructions

 Sign Flag (Bit 7), SF: 0 for positive number and 1 for negative number

 Zero Flag (Bit 6), ZF: If the ALU output is 0, this bit is set (1); otherwise,

it is 0

 Carry Flag (Bit 0), CF: It contains the carry generated during the execution

 Auxiliary Carry, AF: Depending on the width of ALU inputs, this flag

(Bit 4) bit contains the carry generated at bit 3 (or, 7, 15)

of the 8088 ALU

 Parity Flag (bit2), PF: It is set (1) if the output of the ALU has even number

of ones; otherwise it is zero

8-6

Data Transfer Instructions

 MOV Destination, Source

— Move data from source to destination; e.g. MOV [DI+100H], AH

 For 80x86 family, directly moving data from one memory location to

another memory location is not allowed

MOV [SI], [5000H]

 When the size of data is not clear, assembler directives are used

MOV [SI], 0

 BYTE PTR MOV BYTE PTR [SI], 12H

 WORD PTR MOV WORD PTR [SI], 12H

 DWORD PTR MOV DWORD PTR [SI], 12H

— It does not modify flags

You can not move an immediate data to segment register by MOV

MOV DS, 1234H

8-7

Instructions for Stack Operations

 What is a Stack ?

—A stack is a collection of memory locations. It always follows the rule of

last-in-firs-out

— Generally, SS and SP are used to trace where is the latest date written into stack

 PUSH Source

— Push data (word) onto stack

— It does not modify flags

— For Example: PUSH AX (assume ax=1234H, SS=1000H, SP=2000H

before PUSH AX)

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

??

??

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

12

34

??

SS:SP

SS:SP

Before PUSH AX, SP = 2000H After PUSH AX, SP = 1FFEH AX

12 34

 Decrementing the stack pointer during a push is a standard way of implementing stacks in hardware

8-8

Instructions for Stack Operations

 PUSHF

— Push the values of the flag register onto stack

— It does not modify flags

 POP Destination

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

SP

SP

Before POP, SP = 1FFEH After POP AX, SP = 2000H AX

12 34

— Pop word off stack

— It does not modify flags

— For example: POP AX

 POPF

— Pop word from the stack to the flag register

— It modifies all flags

8-9

Data Transfer Instructions

 SAHF

 LAHF

— Store data in AH to the low 8 bits of the flag register

— It modifies flags: AF, CF, PF, SF, ZF

— Copies bits 0-7 of the flags register into AH

— It does not modify flags

 LDS Destination Source

— Load 4-byte data (pointer) in memory to two 16-bit registers

— Source operand gives the memory location

— The first two bytes are copied to the register specified in the destination operand;

the second two bytes are copied to register DS

— It does not modify flags

 LES Destination Source

— It is identical to LDS except that the second two bytes are copied to ES

— It does not modify flags

8-10

Data Transfer Instructions

 LEA Destination Source

— Transfers the offset address of source (must be a memory location) to the

destination register

— It does not modify flags

 XCHG Destination Source

— It exchanges the content of destination and source

— One operand must be a microprocessor register, the other one can be a register

or a memory location

— It does not modify flags

 XLAT

— Replace the data in AL with a data in a user defined look-up table

— BX stores the beginning address of the table

— At the beginning of the execution, the number in AL is used as the

index of the look-up table

— It does not modify flags

8-11

String Instructions

 String is a collection of bytes, words, or long-words that can be up to 64KB

in length

 String instructions can have at most two operands. One is referred to as source

string and the other one is called destination string

— Source string must locate in Data Segment and SI register points to the current

element of the source string

— Destination string must locate in Extra Segment and DI register points to the current

element of the destination string

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

53

48

4F

50

50

49

S

H

O

P
P

4E

I

N

02A8:2000

02A8:2001

02A8:2002

02A8:2003

02A8:2004

02A8:2005

02A8:2006

DS : SI ES : DI

Source String Destination String

8-12

Repeat Prefix Instructions

 REP String Instruction

— The prefix instruction makes the microprocessor repeatedly execute the string instruction

until CX decrements to 0 (During the execution, CX is decreased by one when the string

instruction is executed one time).

— For Example:

MOV CX, 5

REP MOVSB

By the above two instructions, the microprocessor will execute MOVSB 5 times.

— Execution flow of REP MOVSB::

While (CX!=0)

{

CX = CX –1;

MOVSB;

}

Check_CX: If CX!=0 Then

CX = CX –1;

MOVSB;

goto Check_CX;

end if

OR

8-13

Repeat Prefix Instructions

 REPZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is set

 REPE String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNE String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is set

8-14

Direction Flag

 Direction Flag (DF) is used to control the way SI and DI are adjusted during the

execution of a string instruction

— DF=0, SI and DI will auto-increment during the execution; otherwise, SI and DI

auto-decrement

— Instruction to set DF: STD; Instruction to clear DF: CLD

— Example:

CLD

MOV CX, 5

REP MOVSB

At the beginning of execution,

DS=0510H and SI=0000H

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

DS : SI

Source String

SI CX=5

SI CX=4

SI CX=3

SI CX=2

SI CX=1

SI CX=0

8-15

String Instructions

 MOVSB (MOVSW)

— Move byte (word) at memory location DS:SI to memory location ES:DI and

update SI and DI according to DF and the width of the data being transferred

— It does not modify flags

—Example:

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

0300:0100

DS : SI ES : DI

Source String Destination String

MOV AX, 0510H

MOV DS, AX

MOV SI, 0

MOV AX, 0300H

MOV ES, AX

MOV DI, 100H

CLD

MOV CX, 5

REP MOVSB

8-16

String Instructions

 CMPSB (CMPSW)

— Compare bytes (words) at memory locations DS:SI and ES:DI;

update SI and DI according to DF and the width of the data being compared

— It modifies flags

—Example:

Assume: ES = 02A8H

DI = 2000H

DS = 0510H

SI = 0000H

CLD

MOV CX, 9

REPZ CMPSB

What’s the values of CX after

The execution?

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004

0510:0005

0510:0006

02A8:2000

DS : SI
ES : DI

Source String Destination String

02A8:2001

02A8:2002

02A8:2003

02A8:2004

02A8:2005

02A8:2006

53

48

4F

50

50

49

S

H

O

P
P

4E

I

N

8-17

String Instructions

 SCASB (SCASW)

— Move byte (word) in AL (AX) and at memory location ES:DI;

update DI according to DF and the width of the data being compared

— It modifies flags

 LODSB (LODSW)

— Load byte (word) at memory location DS:SI to AL (AX);

update SI according to DF and the width of the data being transferred

— It does not modify flags

 STOSB (STOSW)

— Store byte (word) at in AL (AX) to memory location ES:DI;

update DI according to DF and the width of the data being transferred

— It does not modify flags

