
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

High-Throughput Modular Multiplication and
Exponentiation Algorithms Using

Multibit-Scan–Multibit-Shift Technique
Abdalhossein Rezai and Parviz Keshavarzi

Abstract— Modular exponentiation with a large modulus and
exponent is a fundamental operation in many public-key cryp-
tosystems. This operation is usually accomplished by repeating
modular multiplications. Montgomery modular multiplication
has been widely used to relax the quotient determination. The
carry–save adder has been employed to reduce the critical
path. This paper presents and evaluates a new and efficient
Montgomery modular multiplication architecture based on a
new digit serial computation. The proposed architecture relaxes
the high-radix partial multiplication to a binary multiplica-
tion. It also performs several multiplications of consecutive
zero bits in one clock cycle instead of several clock cycles.
Moreover, the right-to-left and left-to-right modular exponen-
tiation architectures have been modified to use the proposed
modular multiplication architecture as its structural unit.
We provide the implementation results on a Xilinx Virtex 5 FPGA
demonstrating that the total computation time and throughput
rate of the proposed architectures outperform most results so far
in the literatures.

Index Terms— Digit serial computation, modular expo-
nentiation, Montgomery modular multiplication, public-key
cryptography.

I. INTRODUCTION

MODULAR multiplication and modular exponentiation
are widely used operations in many public-key cryp-

tosystems (PKCs) [1]–[4]. Basically, the modular exponentia-
tion with a large modulus is performed by repeating modular
multiplication, which is considerably time-consuming opera-
tion [2]. As a result, the performance of many PKCs is entirely
depending on the throughput rate of the modular multiplication
and the number of required modular multiplications [2]–[4].
The high throughput rate for large integers is hard to achieve
without the use of hardware acceleration [2], [4].

Montgomery modular multiplication [5] is an efficient
method for the high throughput rate hardware implementation
of the modular multiplication with large modulus [6]–[9].
This algorithm replaces the trial division with a series of
additions and right shift operations [10], [11]. The challenging
issue in the Montgomery modular multiplication [5] is the
time-consuming carry propagations of the very large operand
addition [2], [10], [12], [13].

Manuscript received September 7, 2013; revised March 18, 2014, July 5,
2014, and August 20, 2014; accepted August 31, 2014.

The authors are with the Faculty of Electrical and Computer Engineering,
Semnan University, Semnan 35131-19111, Iran (e-mail: rezaie@acecr.ac.ir;
pkeshavarzi@semnan.ac.ir).

Digital Object Identifier 10.1109/TVLSI.2014.2355854

Several computational techniques and hardware
implementations based on the Montgomery modular
multiplication have been developed to speed up the modular
multiplication which can be classified into three categories:
high-radix design [14]–[16], carry–save addition (CSA) design
[2], [4], [8], [17]–[26], and systolic array design [27]–[31].

Nevertheless, the use of CSA structure is an efficient
approach toward relaxing the problem of time-consuming
carry propagation [2], [4], [10]. The challenging issues in
the CSA structure are the format conversion from the carry–
save representation of the final product to its binary represen-
tation, the reduction operation, and the number of required
clock cycles. McIvor et al. [18], [19] proposed that the
intermediate representation of the multiplier results in the
exponentiation is kept in carry–save representation to avoid
carry propagation in format conversion at the end of each
multiplication [2], [4], [17], [19]. Zhang et al. [8] proposed
that the same CSA Montgomery reduction can be used for this
format conversion at the expense of multiple cycles overhead.
Sutter et al. [4] proposed that fast carry-skip addition can
be used for the format conversion and reduction operation to
reduce the computation time.

To further improve the performance of Montgomery mul-
tipliers, the CSA structure can be combined with other tech-
niques and architectures such as Karatsuba–Ofman [32]–[35]
and high radix [4], [10], [12], [13], [36]–[38]. Using
high-radix modular multiplication, the number of required
clock cycles is reduced at the expense of the critical path
overhead [4], [38].

For the modular exponentiation algorithm, the most used
approaches are the right-to-left (R2L) and left-to-right (L2R)
algorithms. There are several techniques to reduce the num-
ber of required modular multiplications in these modular
exponentiation algorithms, such as sliding window [39]–[41],
signed-digit recoding [42]–[44], and common-multiplicand-
multiplication (CMM) [6], [43]–[47].

In this paper, a novel and efficient Montgomery modular
multiplication and exponentiation algorithms and their cor-
responding architectures are developed. The main distinctive
characteristics of our contribution are as follows.

1) Use a new signed-digit encoding expansion developed
in this paper. This new encoding expansion provides
multibit-scan technique.

2) Relax three operations (the zero chain multiplication, the
required additions, and the nonzero digit multiplication)

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Algorithm 1 Radix-2 Montgomery Modular Multiplication
Algorithm

to one multibit shift and one binary addition in only one
clock cycle.

3) Relax the high-radix partial multiplication in each clock
cycle to binary multiplication.

4) Modify the R2L and L2R modular exponentiation algo-
rithms to utilize the proposed modular multiplication
architecture as its structural unit.

5) Present the results in the Xilinx Virtex 5 FPGA.

Our implementation results show that the proposed modular
multiplication and modular exponentiation architectures have
the best performance and throughput rate compared with other
modular multiplication and modular exponentiation architec-
tures and outperform most of them in terms of area × time
complexity.

The rest of this paper is organized as follows. Section II
briefly describes background of the modular multiplication and
the modular exponentiation algorithms. Section III presents the
proposed architectures. First, the developed encoding expan-
sion and the proposed modular multiplication and its imple-
mentation are described, and then the exponentiation algorithm
and its implementation are discussed. Section IV provides
the complexity analysis and detailed hardware implementa-
tion of the developed modular multiplication, and modular
exponentiation architectures, and compares results with other
architectures. Finally, the conclusion is given in Section V.

II. BACKGROUND

A. Montgomery Modular Multiplication

Montgomery modular multiplication algorithm [5] is a
widely used modular multiplication algorithm. This algorithm
enhances the efficiency of the modular multiplication because
it can replace the trial division with the simple right shift and
addition operations [6]–[9]. The radix-2 Montgomery modular
multiplication for inputs X , Y , and M is shown in Algorithm 1.

The inputs of this algorithm are n-bit integers X , Y , and M .
The output is S(n) := X · Y · R mod M . S(i) represents S in
the i th iteration, xi ∈ {0, 1} denotes the i th bit of X , and
R = 2−n mod M . To eliminate the final comparison and
subtraction in step 6 of Algorithm 1, Walter [48] kept the range
of S within [0, 2M) by changing the number of iterations and
the value of R to n + 2 and 2−(n+2) mod M , respectively
[2], [4], [10]. Although a great hardware complexity can be
reduced, the long carry propagation for the very large operand
addition still restricts the performance of Algorithm 1 [2],
[4], [10]. The main delay time in Algorithm 1 is the long carry

Algorithm 2 CSA Montgomery Modular Multiplication
Algorithm

Algorithm 3 High-Radix CSA Montgomery Modular Multi-
plication Algorithm

propagation delay. This problem can be solved using CSA
[2], [4], [10]. The CSA version of the Montgomery modular
multiplication is shown in Algorithm 2.

In this algorithm, Sc and Ss denote the carry and sum
components of S. The challenging issues in this algorithm are
the format conversion from the carry–save representation of
the final product to its binary representation in step 6, the
reduction operation in step 7, and the number of required
clock cycles. Recently, Sutter et al. [4] proposed that a fast
carry-skip addition can be used for performing steps 6 and 7
to enhance the efficiency of the CSA Montgomery modular
multiplication.

Another way to enhance the efficiency of the CSA
Montgomery modular multiplication is combination of CSA
architecture with other techniques such as high radix [10],
[13], [36], [37]. In this approach, a group of multiplier bits
are processed at each clock cycle instead of several clock
cycles. Algorithm 3 shows the high-radix CSA Montgomery
modular multiplication algorithm.

In this algorithm, X (i) denotes the i th digit of X and
Mr ...0 = Mmod2r+1. This algorithm reduces the number of
required clock cycles from n-clock cycle to n/r -clock cycle for
radix-2r at the expense of the critical path overhead. The crit-
ical path includes X (i) · Y and q(i) · M computations. In our
architecture, we relax the high-radix X (i) · Y multiplication to
binary multiplication and improve the q(i) · M computation.

B. Modular Exponentiation

The modular exponentiation algorithm usually consists
of a repetition of modular multiplication algorithm [4],
[38], [39], [49]. This algorithm is typically implemented

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REZAI AND KESHAVARZI: HIGH-THROUGHPUT MODULAR MULTIPLICATION AND EXPONENTIATION ALGORITHMS 3

Algorithm 4 L2R Modular Exponentiation Algorithm

Algorithm 5 R2L Modular Exponentiation Algorithm

using the binary methods and the Montgomery modular
multiplication algorithm. There are two basic algorithms in
the binary methods: the L2R and R2L modular exponentiation
algorithms. If the Montgomery modular multiplication is
used in the modular exponentiation algorithm, the additional
preprocessing and postprocessing steps are required for
converting the operands to the Montgomery domain [2], [4].

The L2R modular exponentiation algorithm used for com-
puting C = M E modN is summarized in Algorithm 4 where
M < N denotes an n-bit massage, E denotes a ke-bit
exponent, and N denotes an n-bit modulus.

In this algorithm, the value of R is 2−n or 2−(n+2)

depending on the modular multiplication algorithm described
in Section II-A. The exponent bits are scanned from the
most significant bit (MSB) and there exists data dependency
between the square and multiplication operations. This algo-
rithm requires 1.5ke + 2 multiplication operations on average
to perform the modular exponentiation algorithm [2], [4].

Another way to compute C = M E modN , the R2L modular
exponentiation algorithm, processes the exponent bits from the
least significant bit (LSB). This algorithm is summarized in
Algorithm 5.

In this algorithm, there is no data dependency between
the multiplication and square operations. In other words,
two operations can execute in parallel. Therefore, the total
computation time is reduced at the expense of area overhead.
This algorithm requires ke + 2 multiplication operations to
perform the modular exponentiation algorithm [2], [4].

Algorithm 6 Canonical Recoding Algorithm

C. Canonical Recoding (CR) Algorithm

A canonical representation [50] of an integer XCR =
(xn−1xn−2 . . . x1x0) is a sequence of digit such that
xi ∈ {−1, 0, 1}. This representation is one of the existing
signed-digit representations with unique features that make
it useful in high-speed arithmetic [51], [52]. Algorithm 6
is used for converting an n-bit integer X from the binary
representation to its canonical representation.

In this algorithm, the input integer X is processed from
the LSB to MSB. The average Hamming weight of an
n-bit canonical recoded integer is n/3 [42], [51]. In the
hardware implementation, several bits can be processed
simultaneously [51], which enhance the efficiency of the
implementation of canonical recoding algorithm [51].

III. PROPOSED ALGORITHM AND ARCHITECTURE

The design objectives in this paper are speeding up
the modular multiplication and modular exponentiation
algorithms. The design strategy is using the multibit-scan–
multibit-shift technique in one clock cycle. In the proposed
modular multiplication algorithm, the high-radix computation
of X (i) · Y becomes the binary multiplication. The proposed
algorithm also executes several addition operations, required
for zero chain, in one clock cycle instead of several clock
cycles. Therefore, we consider the reformulation of the
Montgomery modular multiplication algorithm and then, map
the results to derive a modular exponentiation algorithm.
This reformulation of modular multiplication is based on a
new multiplier expansion developed in this paper.

A. Proposed Integer Expansion

A proposed expansion of an n-bit integer X is defined here
as XSD = (zn−1zn−2 . . . z1z0). Each digit of the proposed
expansion, zi , includes a number of consecutive zero bits that
can be followed by a nonzero digit or a coefficient. In other
words, each digit of the proposed expansion, zi , includes a
pair (ki , f (i)), where f (i) denotes the number of zero bits in
sequence, and ki denotes the coefficient.

The proposed expansion of an integer X is computed by
applying Algorithm 6 and the partitioning method [39], [40]
to the binary representation of the integer X . The canonical
recoding is utilized to enhance the probability of zero bits
in the proposed integer expansion and thereby reducing the
number of required digits in the proposed integer expansion.

Note that all digits should have an equal size in the hardware
implementation. As a result, the number of zero bits in
sequence in each digit of the proposed integer expansion will

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Block diagram for converting an integer X from binary representation
to the proposed integer expansion.

TABLE I

POSSIBLE CONDITIONS FOR yi

be limited to �. Our analysis shows that, regarding hardware
limitations, the optimal value for � is 2, two consecutive zero
bits followed by nonzero digit or three consecutive zero bits.

For example, the proposed expansion of X = (254855)10 =
(111110001110000111)2 is computed as follows.

After applying the canonical recoding, it is shown as
XCR = (100001̄001001̄0001001̄)CR, after applying the par-
titioning method with � = 2, it is shown as (10)(000)(1̄00)
(100)(1̄)(000)(100)(1̄), and finally the proposed expansion is
shown as (1, 1)(0, 3)(1̄, 2)(1, 2)(1̄, 0)(0, 2)(1, 2)(1̄, 0).

When this expansion is utilized in the Montgomery modular
multiplication, it results in a series of binary partial multipli-
cations and multibit shifts. More specifically, ki is utilized for
binary partial multiplication, and f (i) is utilized for multibit
shift.

In hardware implementation, each pair of the proposed
expansion is represented by three bits: one bit for ki and two
bits for f (i). ki is as follows:

ki =
{

0, for positive integers
1, for negative integers.

However, when f (i) = 3, ki is zero, and it denotes the
coefficient is zero. Therefore, the hardware representation for
the proposed integer expansion is as follows:

000, 011, 110, 011, 100, 011, 011, 100.

Fig. 1 shows two major steps for converting the binary
representation to the proposed integer expansion.

In the CR implementation, each digit yi contains two bits
{ys

i , yd
i }. Table I defines all possible conditions for yi .

Fig. 2 shows the schematic circuit for converting an integer
from its binary representation into its CR representation.

Note that this schematic circuit is proposed prior to this
paper in [51]. The partitioning and zero count strategy used
in this paper is as follows.

Algorithm 7 Partitioning and Zero Count Strategy

Fig. 2. Circuit used for converting an integer from its binary representation
X to the CR representation Y = {yn , yn−1, . . ., y1, y0}.

B. Proposed Modular Multiplication

In Algorithm 3, r bits of the multiplier are processed per
iteration. The drawback of using Algorithm 3 is that each digit
of q(i) and X (i) are represented in radix-2r .

The corresponding version that relaxes the high-radix partial
multiplication X (i) · Y to the binary multiplication is the
proposed variable length Montgomery modular multiplication
(VLM3) algorithm that is shown in Algorithm 8. The inputs
of this algorithm are XSD, Y , and M , which denote the
proposed expansion of multiplier X , the n-bit multiplicand,
and modulus, respectively. Pc and Ps denote the carry and
sum components of P .

This new modular multiplication algorithm relaxes the high-
radix partial multiplication X (i) ·Y to binary modular multipli-
cation using the proposed expansion. In other words, applying
the proposed expansion to the multiplier, the computation of
(Pc(i), Ps(i)) = Sc(i) + Ss(i) + X (i) · Y is relaxed to

(Pc(i), Ps(i)) = Sc(i) + Ss(i) + 2a(i) · Y

(Pc(i), Ps(i)) = Sc(i) + Ss(i) − 2a(i) · Y

or

(Pc(i), Ps(i)) = Sc(i) + Ss(i)

based on f (i) �= 3 and ki = 0, f (i) �= 3 and ki = 1, or
f (i) = 3 in steps 6, 7, and 4, respectively. These steps can be
implemented using a multiplexer (Mux), a modified (limited
number of shifts) Barrel shifter (MBS), and LUTs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REZAI AND KESHAVARZI: HIGH-THROUGHPUT MODULAR MULTIPLICATION AND EXPONENTIATION ALGORITHMS 5

Algorithm 8 Proposed Modular Multiplication Algorithm
(VLM3 Algorithm)

Fig. 3. Data path of a basic cell of the VLM3 algorithm.

Moreover, this new modular multiplication algorithm exe-
cutes several addition operations of consecutive zero bits in
one clock cycle instead of several clock cycles. This operation
is executed in step 9, which is implemented using the MBS
and CSAs.

The format conversion from the carry–save representation
of the final product into its binary representation and reduction
operation, steps 11 and 12 in Algorithm 7, are implemented
similar to [4] using two carry-skip adders and a multiplexer.
This solution required w cycles to perform these steps, where
w = �T/t�, T denotes the period of circuit without final addi-
tion, and t is the sum of addition delay and multiplexer delay.
Fig. 3 shows the data path of a basic cell that implements the
VLM3 algorithm.

Fig. 4. Proposed architecture for the q(i) · M generator.

The proposed architecture contains three MBSs, two CSAs,
four registers, a 3-bit shift register, a Mux, two XORs, a NAND

gate, a q(i) · M generator, and final comparison and addition
block.

In this circuit, the sel signal of Mux1 is determined based
on the f (i) as follows:

sel =
{

0, where f (i) = 3
1, where f (i) �= 3.

In this case, sel = 0 provides zero and sel = 1 provides
Y for MBS1 input. Moreover, the ki signal is utilized to
determine that the CSA1 works as an adder or a substructure.
In other words, the CSA1 provides Sc(i) + Ss(i) + X (i) · Y in
each clock cycle, the CSA2 provides Pc(i) + Ps(i) + q(i) · M ,
and the MBSs shift the inputs based on the value of a(i).

To compute q(i) · M , a LUT and two MBSs are utilized.
For a(i)= 2, the coefficient q(i) depends on the least three bits
of the partial results of CSA1, Pc, and Ps, and two bits of
M, m2, and m1. The implementation of q(i) · M is as follows.
First, splitting q(i) into two numbers that are power of 2,
q1 and q2. Second, shifting M to get two components of
q(i) · M , q1 · M and q2 · M , based on q1 and q2. Finally,
adding these two components with (Pc(i), Ps(i)) using CSA2.

For example with q(i) = 6, q(i) can be split into q1 = 4 and
q2 = 2 or q1 = 8, and q2 = −2. Then, 6M can be replaced
as 4M + 2M or 8M − 2M . Note that the negative component,
for example −2M in the previous example, is implemented by
inverting the positive component, 2M , and introducing a carry-
in with the value of 1. As a result, only one of the components
can be chosen as a negative value. Fig. 4 shows the proposed
architecture of the q(i)·M generator. The proposed architecture
contains a 3-bit full adder (FA), a LUT, a 1-bit MBS, and
a 3-bit MBS. The LUT outputs are performed according to
Tables II–IV. Note that for a(i) = 0, the q(i) = P0(i).

In Table IV, the q ′
i shows the number of required shifts,

i.e., qi = 2q ′
i . The LUT outputs, q ′

1 and q ′
2, are the control

signals for the MBSs that implement q1 · M and q2 · M .
The LUT also has an output Cin which is asserted 1 whenever
q2 ·M is negative. This signal becomes a carry-in for the CSA2
in Fig. 3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II

LUT FOR DETERMINING q(i) FOR a(i) = 2

TABLE III

LUT FOR DETERMINING q(i) FOR a(i) = 1

TABLE IV

LUT FOR DETERMINING THE COMPONENTS OF q(i)

C. Proposed Modular Exponentiation

The sliding window method and CMM method required
extra area [4], [47]. As a result, these methods are inter-
esting ideas for software or software/hardware implemen-
tations [4], [39], [47], in which the extra area is not a
problem. In this paper, R2L and L2R modular exponentiation
algorithms are implemented using VLM3 algorithm. Since,
a new integer expansion is utilized in the VLM3 algorithm,
the R2L and L2R modular exponentiation algorithms need
to be modified to utilize the VLM3 algorithm as its
structural unit.

The proposed R2L modular exponentiation algorithm,
which employs the VLM3 algorithm, is shown in Algorithm 9.
In this algorithm, R = 2−n, RSD and MSD denote R and M*
in the proposed integer expansion, respectively. The format
conversion from binary representation of R2 and 1 to the
proposed integer expansion is precomputed because these
values are fixed.

The format conversion of M*, in steps 4 and 8 of
Algorithm 9, is executed in parallel with previous multi-
plication. These steps are executed after one multiplication
delay compared with its previous step. As a result, the format

Algorithm 9 Proposed R2L Modular Exponentiation Algo-
rithm

Fig. 5. Proposed R2L modular exponentiation architecture.

conversion in this algorithm reasonably affects the computa-
tion time. The proposed R2L modular exponentiation archi-
tecture is shown in Fig. 5.

In the architecture of Fig. 5, the signal Control1 is utilized
to control the execution of steps 3 and 7 of Algorithm 9.
Control1 = 1 is utilized to perform step 3, and Control1 = 0 is
utilized to perform step 7. The signal Control2 is also utilized
to control the execution of steps 6 and 10 of Algorithm 9.
Control2 = 0 is utilized to perform step 6, and Control2 = 1
is utilized to perform step 10. Moreover, both multiplication
and square operations are executed in parallel. The total com-
putation time is approximately expressed as T = (ke +4)TMP,
where TMP denotes the multiplication time.

The proposed L2R modular exponentiation algorithm,
which employs the VLM3 algorithm, is shown in
Algorithm 10. The format conversion in this algorithm
also reasonably affects the computation time.

The proposed L2R modular exponentiation architecture is
shown in Fig. 6.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REZAI AND KESHAVARZI: HIGH-THROUGHPUT MODULAR MULTIPLICATION AND EXPONENTIATION ALGORITHMS 7

Algorithm 10 Proposed L2R Modular Exponentiation
Algorithm

Fig. 6. Proposed L2R exponentiation architecture.

The proposed architecture shown in Fig. 6 utilizes only one
VLM3 unit. The signal of control is utilized to control the
operand 1 and operand 2 to perform steps 3, 5, 8, and 12.
The average computation time is approximately expressed as
T = (1.5ke + 4)TMP.

IV. HARDWARE IMPLEMENTATION AND

PERFORMANCE COMPARISON

For the purpose of fair comparison with previous designs
that usually adapted a different technology, we first analyzed
the critical path delay, required clock cycles, and area
complexity of the VLM3 algorithm, and other modified
Montgomery modular multiplications, then the designed
circuits have been coded in VHDL, and placed and routed to
Xilinx XC5VLX20T-2FF323 FPGA by executing Xilinx Inte-
grated Software Environment (ISE) version 14.1. VHDL codes
have been tested for 512- and 1024-bit length of the modulus.

A. Area Complexity and Critical Path Delay Analysis

From Fig. 3, the critical path delay of the VLM3 multiplier
can be approximately expressed as TXOR2 + 3TFA, where TX

denotes the delay time of cell X . Note that the input of MBS1
can provide in previous clock cycle at the expense of one

clock cycle overhead. On the other hand, the resulting area
complexity of VLM3 multiplier can be estimated as 5 nAReg+
2 nAXOR + 3 nAMBS + 4 nAFA + nAMux2 + nAqM + ACONV.,
where AqM = AFA + AMBS1 + AMBS2 + AMBS3 + ALUT,
n denotes the bit length of modulus, and ACONV. denotes the
area of convertor circuit. The notation AX denotes the area of
cell X . Note that the delay time of FA is greater than other
cells critical path of Fig. 3.

Table V lists the analytical results of the critical path delay,
the number of required clock cycles, and area complexity
of the VLM3 algorithm and other modified Montgomery
modular multiplication algorithms for n-bit modulus. In refer-
ence, d denotes the number of bits per digit and θ denotes
the probability of an iteration that cannot be bypassed in
algorithm MMM42 in [10], which approximates to 0.81.
wi , i = 1, 2, 4, 8, denotes the required clock cycles for the
final conversion from carry save to binary, which is determined
based on technology and modulus bit length.

B. Proposed Modular Multiplication Implementation

Table VI shows the implementation results of the VLM3
algorithm for Xilinx Virtex 5 FPGA using 512- and 1024-bit
length of the modulus in comparison with other implementa-
tion results of the Montgomery modular multiplication archi-
tectures in [2], [4], [8], [19], [21], and [28]. In this table, Period
denotes the minimum clock time in terms of nanoseconds.
Time denotes the total computation time, and it is shown
in terms of microseconds. Area is shown in terms of the
number of occupied slice for FPGA design. The A × D
metrics express the computation time by area measurement
in slice × millisecond. The throughput rate Thr. is shown in
terms of Mb/s. The performance is computed by inversing the
A × D metrics.

C. Proposed Modular Exponentiation Implementation

Table VII shows the implementation results of the pro-
posed R2L and L2R modular exponentiation algorithms in
Virtex 5 FPGA in comparison with other modular exponenti-
ation algorithms and architectures in [2], [4], [19], [21], [47],
and [49] for 1024-bit length modulus. In this table, Meth.
stands for the used method, L2R or R2L. The maximum
frequency (fmax) is shown in terms of megahertz. Time
denotes the total computation time, and it is shown in terms of
milliseconds. Area is expressed in terms of the occupied slice
for FPGA design. The A× D metrics express the computation
time by area measurement in slice × millisecond, and the
throughput rate Thr. is shown in terms of kb/s.

D. Discussion of Results

Based on our analytical results, which are shown in Table V,
the critical path delay shows an improvement in comparison
with high-radix multipliers (greater than radix-4) due to the
computation of X (i) ·Y in VLM3 multiplier is relaxed to binary
multiplication. It is because X (i) is 0, 1, or −1. As a result,
a 3-2 CSA is utilized to perform Sc + Ss + X (i) · Y instead
of 4-2 CSA. Moreover, the number of required clock cycles

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE V

COMPLEXITY ANALYSIS OF MODIFIED MONTGOMERY MODULAR MULTIPLICATIONS

TABLE VI

COMPARISON OF MODULAR MULTIPLICATION IMPLEMENTATIONS IN FPGA

shows an improvement in comparison with radix-2 and radix-
4 multipliers due to the VLM3 multiplier performs several
consecutive zero bits followed by nonzero digit in one clock
cycle instead of several clock cycles.

Based on our implementation results of the VLM3
architecture, which are shown in Table VI, the VLM3
architecture provides an improvement on the resulting
area × time complexity, total computation time, throughput
rate, and performance compared with recent modification of
the Montgomery modular multiplication architectures in [4]
and [21] at the expense of slightly area overhead. It should
be noted that the modular multiplication architecture of [4]
is implemented in both Xilinx Virtex II FPGA and Xilinx

Virtex 5 FPGA. The implementation results in the Xilinx
Virtix II FPGA show that the modular multiplication architec-
ture in [4] provides an improvement on the resulting area ×
time complexity, total computation time, and throughput rate
compared with modular multiplication architectures in [2], [8],
[19], and [28]. As a result, we can conclude that the proposed
modular multiplication architecture has an improvement on
the resulting area × time complexity, total computation time,
throughput rate, and performance compared with modular
multiplication architectures in [2], [4], [8], [19], [21], and [28].

Based on our implementation results of the proposed
modular exponentiation architectures which are shown in
Table VII, the proposed R2L and L2R modular exponentiation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REZAI AND KESHAVARZI: HIGH-THROUGHPUT MODULAR MULTIPLICATION AND EXPONENTIATION ALGORITHMS 9

TABLE VII

COMPARISON OF MODULAR EXPONENTIATION IMPLEMENTATIONS FOR

1024-BIT LENGTH OF MODULUS IN FPGA

architectures provide an improvement on the total computation
time and throughput rate compared with modular exponentia-
tion architectures in [4], [21], and [47] for 1024-bit modulus.
Moreover, the proposed R2L modular exponentiation archi-
tecture provides an improvement on the resulting area × time
complexity compared with the R2L modular exponentiation
architecture in [4] for d = 4. The only modular exponentiation
architecture that has a slightly better area × time complexity
is the R2L modular exponentiation architecture of [4] for
d = 1. However, the total computation time in this architecture
is about three times bigger than the proposed R2L modular
exponentiation architecture.

Note that the implementation results in the Xilinx Virtex II
FPGA for the modular exponentiation architecture of [4]
provides an improvement on the total computation time, and
throughput rate in comparison with modular exponentiation
architectures in [2], [19], and [49]. Therefore, we can conclude
that the proposed architecture has also an improvement on the
total computation time, and throughput rate in comparison with
modular exponentiation architectures in [2], [4], [19], [21],
[47], and [49].

The analytical results and FPGA implementation results
show that the proposed modular multiplication and modular
exponentiation algorithms/architectures have an improvement
in throughput rate, total computation time, and area × time
compared with other modified Montgomery modular multipli-
cation and modular exponentiation algorithms/architectures.

V. CONCLUSION

In this paper, the main ideas that apply to the Montgomery
modular multiplication are to perform several shifts of
the accumulating product in one clock cycle when there are
several consecutive zero bits in the multiplier and relax the
high-radix partial multiplication to the binary multiplication.
A new multiplier expansion increases the applicability of

these ideas. In hardware implementation, the multibit-scan–
multibit-shift technique was utilized using this new multiplier
expansion and MBS (limited number of shifts). In addition,
the L2R and R2L modular exponentiation architectures have
been modified to use the proposed modular multiplication
architecture as its structural unit. The proposed architectures
were implemented in Xilinx Virtex 5 FPGA. The complexity
analysis results and implementation results show that the pro-
posed architectures provided significantly improvement on the
total computation time and throughput rate in comparison with
other modular multiplication/exponentiation architectures.

REFERENCES

[1] F. Gandino, F. Lamberti, G. Paravati, J. Bajard, and P. Montuschi,
“An algorithmic and architectural study on Montgomery exponentia-
tion in RNS,” IEEE Trans. Comput., vol. 61, no. 8, pp. 1071–1083,
Aug. 2012.

[2] M.-D. Shieh, J.-H. Chen, H.-H. Wu, and W.-C. Lin, “A new modular
exponentiation architecture for efficient design of RSA cryptosystem,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 9,
pp. 1151–1161, Sep. 2008.

[3] N. Nedjah, L. M. Mourelle, M. Santana, and S. Raposo, “Mas-
sively parallel modular exponentiation method and its implementa-
tion in software and hardware for high-performance cryptographic
systems,” IET Comput. Digit. Techn., vol. 6, no. 5, pp. 290–301,
Sep. 2012.

[4] G. D. Sutter, J. Deschamps, and J. L. Imana, “Modular multiplication
and exponentiation architectures for fast RSA cryptosystem based on
digit serial computation,” IEEE Trans. Ind. Electron., vol. 58, no. 7,
pp. 3101–3109, Jul. 2011.

[5] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519–521, 1985.

[6] A. Rezai and P. Keshavarzi, “A new CMM-NAF modular exponentiation
algorithm by using a new modular multiplication algorithm,” Trends
Appl. Sci. Res., vol. 7, no. 3, pp. 240–247, 2012.

[7] S. Talapatra, H. Rahaman, and J. Mathew, “Low complexity digit
serial systolic Montgomery multipliers for special class of GF(2m),”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 5,
pp. 847–852, May 2010.

[8] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang, “An efficient CSA
architecture for Montgomery modular multiplication,” Microprocess.
Microsyst., vol. 31, no. 7, pp. 456–459, 2007.

[9] H. R. Ahmadi and A. Afzali-Kusha, “A low-power and low-energy
flexible GF(p) elliptic-curve cryptography processor,” J. Zhejiang Univ.,
Sci. C, vol. 11, no. 9, pp. 724–736, 2010.

[10] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W. Hsu, “Energy-efficient
high-throughput Montgomery modular multipliers for RSA cryptosys-
tems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 11,
pp. 1999–2009, Nov. 2013.

[11] A. Rezai and P. Keshavarzi, “High-performance implementation
approach of elliptic curve cryptosystem for wireless network applica-
tions,” in Proc. Int. Conf. Consum. Electron., Commun. Netw., Apr. 2011,
pp. 1323–1327.

[12] A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic design
of RSA processors based on high-radix Montgomery multipliers,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7,
pp. 1136–1146, Jul. 2011.

[13] G. Sassaw, C. J. Jimenez, and M. Valencia, “High radix implementation
of Montgomery multipliers with CSA,” in Proc. Int. Conf. Microelec-
tron., Dec. 2010, pp. 315–318.

[14] T. Blum and C. Paar, “High-radix Montgomery modular exponentiation
on reconfigurable hardware,” IEEE Trans. Comput., vol. 50, no. 7,
pp. 759–764, Jul. 2001.

[15] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” in Proc. 12th Symp. Comput. Arithmetic, Jul. 1995,
pp. 193–199.

[16] P. Kornerup, “High-radix modular multiplication for cryptosys-
tems,” in Proc. 11th Symp. Comput. Arithmetic, Jun./Jul. 1993,
pp. 277–283.

[17] M.-D. Shieh, J.-H. Chen, W.-C. Lin, and H.-H. Wu, “A new algorithm for
high-speed modular multiplication design,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 56, no. 9, pp. 2009–2019, Sep. 2009.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[18] C. McIvor, M. McLoone, and J. V. McCanny, “Fast Montgomery
modular multiplication and RSA cryptographic processor architectures,”
in Proc. 37th Asilomar Conf. Signals, Syst. Comput., vol. 1. Nov. 2003,
pp. 379–384.

[19] C. McIvor, M. McLoone, and J. V. McCanny, “Modified Montgomery
modular multiplication and RSA exponentiation techniques,” IEE Proc.-
Comput. Digit. Techn., vol. 151, no. 6, pp. 402–408, Nov. 2004.

[20] C.-C. Yang, T.-S. Chang, and C.-W. Jen, “A new RSA cryptosystem
hardware design based on Montgomery’s algorithm,” IEEE Trans. Cir-
cuits Syst. II, Analog Digit. Signal Process., vol. 45, no. 7, pp. 908–913,
Jul. 1998.

[21] A. P. Fournaries, “Fault and simple power attack resistant RSA using
Montgomery modular multiplication,” in Proc. IEEE Int. Symp. Circuit.
Syst., May/Jun. 2010, pp. 1875–1878.

[22] J. C. Neto, A. F. Tenca, and W. V. Ruggiero, “Towards an efficient
implementation of sequential Montgomery multiplication,” in Proc. 44th
Asilomar Conf. Signals, Syst. Comput., Nov. 2010, pp. 1680–1684.

[23] Z. Hu, R. M. Al Shboul, and V. P. Shirochin, “An efficient archi-
tecture of 1024-bits cryptoprocessor for RSA cryptosystem based on
modified Montgomery’s algorithm,” in Proc. 4th IEEE Int. Workshop
Intell. Data Acquisition Adv. Comput. Syst., Technol. Appl., Sep. 2007,
pp. 643–646.

[24] K. Manochehri and S. Pourmozafari, “Modified radix-2 Montgomery
modular multiplication to make it faster and simpler,” in Proc. Int. Conf.
Inf. Technol., vol. 1. Apr. 2005, pp. 598–602.

[25] K. Manochehri and S. Pourmozafari, “Fast Montgomery modular mul-
tiplication by pipelined CSA architecture,” in Proc. 16th Int. Conf.
Microelectron., Dec. 2004, pp. 144–147.

[26] T.-W. Kwon, C.-S. You, W.-S. Heo, Y.-K. Kang, and J.-R. Choi, “Two
implementation methods of a 1024-bit RSA cryptoprocessor based on
modified Montgomery algorithm,” in Proc. IEEE Int. Symp. Circuits
Syst., vol. 4. May 2001, pp. 650–653.

[27] C. D. Walter, “Systolic modular multiplication,” IEEE Trans. Comput.,
vol. 42, no. 3, pp. 376–378, Mar. 1993.

[28] S. B. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware imple-
mentation of a Montgomery modular multiplier in a systolic array,” in
Proc. Int. Parallel Distrib. Process. Symp., Apr. 2003.

[29] J.-H. Hong and C.-W. Wu, “Cellular-array modular multiplier for fast
RSA public-key cryptosystem based on modified Booth’s algorithm,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3,
pp. 474–484, Jun. 2003.

[30] A. P. Fournaris and O. Koufopavlou, “A new RSA encryption archi-
tecture and hardware implementation based on optimized Montgomery
multiplication,” in Proc. IEEE ISCAS, May 2005, pp. 4645–4648.

[31] J. Xie, J. J. He, and P. K. Meher, “Low latency systolic Montgomery
multiplier for finite field G F(2m) based on pentanomials,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 2, pp. 385–389,
Feb. 2013.

[32] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” Soviet Phys.-Doklady, vol. 7, no. 2, pp. 595–596, 1963.

[33] G. Saldamli, “Partially interleaved modular Karatsuba–Ofman multipli-
cation,” in Proc. FTRA Int. Symp. Adv. Cryptograp., Security Appl.,
2011.

[34] A. Aris, B. Ors, and G. Saldamli, “Architectures for fast modular
multiplication,” in Proc. 14th Euromicro Conf. Digit. Syst. Design., 2011,
pp. 434–437.

[35] F. O. Ehtiba and A. Samsudin, “Multiplication and exponentiation of big
integers with hybrid Montgomery and distributed Karatsuba algorithm,”
in Proc. Int. Conf. Inf. Commun. Technol., Theory Appl., Apr. 2004,
pp. 421–422.

[36] F. Gang, “Design of modular multiplier based on improved Montgomery
algorithm and systolic array,” in Proc. 1st Int. Multi-Symp. Comput.
Comput. Sci., vol. 2. Jun. 2006, pp. 356–359.

[37] A. Cilardo, A. Mazzeo, L. Romano, and G. P. Saggese, “Exploring the
design-space for FPGA-based implementation of RSA,” Microprocess.
Microsyst., vol. 28, no. 4, pp. 183–191, 2004.

[38] A. E. Cohen and K. K. Parhi, “Architecture optimizations for the RSA
public key cryptosystem: A tutorial,” IEEE Circuits Syst. Mag., vol. 11,
no. 4, pp. 24–34, Nov. 2011.

[39] N. Nedjah and L. M. Mourelle, “High-performance hardware of the
sliding-window method for parallel computation of modular exponenti-
ations,” Int. J. Parallel Program., vol. 37, no. 6, pp. 537–555, 2009.

[40] N. Nedjah and L. M. Mourelle, “A hardware/software co-design versus
hardware-only implementation of modular exponentiation using the
sliding-window method,” J. Circuits, Syst. Comput., vol. 18, no. 2, pp.
295–310, 2009.

[41] N. Nedjah and L. M. Mourelle, “Efficient hardware for modular
exponentiation using the sliding-window method with variable-length
partitioning,” in Proc. 9th Int. Conf. Young Comput. Sci., Nov. 2008,
pp. 1980–1985.

[42] Ö. Egecioglu and Ç. K. Koç, “Exponentiation using canonical recoding,”
Theoretical Comput. Sci., vol. 129, no. 2, pp. 407–417, 1994.

[43] C.-L. Wu, D.-C. Lou, and T.-J. Chang, “An efficient Montgomery
exponentiation algorithm for public-key cryptosystems,” in Proc. IEEE
Int. Conf. Intell. Security Inform., Jun. 2008, pp. 284–285.

[44] C.-L. Wu, “An efficient common-multiplicand-multiplication method to
the Montgomery algorithm for speeding up exponentiation,” Inf. Sci.,
vol. 179, no. 4, pp. 410–421, 2009.

[45] J.-C. Ha and S.-J. Moon, “A common-multiplicand method to the
Montgomery algorithm for speeding up exponentiation,” Inf. Process.
Lett., vol. 66, no. 2, pp. 105–107, 1998.

[46] A. Rezai and P. Keshavarzi, “High-performance modular exponentiation
algorithm by using a new modified modular multiplication algorithm and
common-multiplicand-multiplication method,” in Proc. World Congr.
Internet Security, Feb. 2011, pp. 192–197.

[47] T. Wu, S. Li, and L. Liu, “Fast, compact and symmetric modular expo-
nentiation architecture by common-multiplicand Montgomery modular
multiplications,” Integr., VLSI J., vol. 36, no. 4, pp. 323–332, 2013.

[48] C. D. Walter, “Montgomery exponentiation needs no final subtractions,”
Electron. Let., vol. 35, no. 21, pp. 1831–1832, 1999.

[49] T. Blum and C. Paar, “Montgomery modular exponentiation on recon-
figurable hardware,” in Proc. 14th IEEE Symp. Comput. Arithmetic,
Apr. 1999, pp. 70–78.

[50] G. W. Reitwiesner, “Binary arithmetic,” in Advances in Computers,
vol. 1. San Francisco, CA, USA: Academic, 1960, pp. 231–308.

[51] G. A. Ruiz and M. Granda, “Efficient canonic signed digit recoding,”
Microelectron. J., vol. 42, no. 9, pp. 1090–1097, 2011.

[52] I. Koren, Computer Arithmetic Algorithms, 2nd ed. Natick, MA, USA:
AK Peters, 2002.

Abdalhossein Rezai received the B.S. and M.S.
degrees from the Isfahan University of Technology
(IUT), Isfahan, Iran, in 1999, and 2003, respectively,
and the Ph.D. degree from Semnan University, Sem-
nan, Iran, in 2013, all in electrical engineering.

He is currently an Assistant Professor with
the Academic Center for Education, Culture and
Research (ACECR), IUT branch. His current
research interests include network security, cryp-
tography algorithm and its application, and neural
network implementation in nanoelectronics.

Parviz Keshavarzi received the M.S. degree in
electrical engineering from Tehran University,
Tehran, Iran, in 1988 and the Ph.D. degree in
electrical engineering from the University of
Manchester, Manchester, U.K., in 1999.

He is currently an Associate Professor with Sem-
nan University, Semnan, Iran. His current research
interests include network security, cryptography
algorithm and its application, and nanoelectronics.

