
3.2 Modular Exponentiation

In order to compute the modular exponentiation Me mod N for cryptography applications, the

exponentiation Me is not computed first, rather a part of the exponentiation operation, usually a

partial multiplication, is performed. Then the partial result is reduced modulo N at each step. This

is simply because the exponentiation result of large numbers is very large. As an instance, the result

of Me when M and e are 256-bit integers, requires about 2256 bits which is larger than the amount

of total articles in the universe. Similar to the exponentiation procedure which performs a

successive multiplications, modular exponentiation uses the same procedure as exponentiation, but

it performs modular multiplication. Therefore the exponentiation methods can be used for modular

exponentiation without loss of generality. The next section briefly describes the exponentiation

algorithms, further details of which can be found in the appropriate references.

3.2.1 Binary Methods

The two commonly used algorithms which are for hardware implementation of exponentiation

are the left-to-right and right-to-left algorithms. These algorithms, which are also called the square

and multiply method, perform exponentiation by repeated squaring and multiplication.

Left-to-Right algorithm: For the integers M, N, C and e = {en-1en-2...e0}, ei  {0,1}, the following

algorithm computes C = Me mod N:

 The Left-to-Right Exponentiation Algorithm

 C := 1;

 for i = n-1 downto 0 loop

 C := C2 mod N;

 if ei = 1 then C := M.C mod N;

 return C;

where C = Me mod N. According to Knuth [Knu98], this method was known as early as 200 B.C.

by Indian mathematicians. However, a clear discussion of how to compute 2n efficiently for

arbitrary n was given by al-Uqlidisi, an Islamic mathematician, in 952 A.D. Beginning initially

with C = 1, this algorithm sets C to C2 and then, if ei = 1, sets C to C.M. The exponent bits are

scanned from left to right and the zeros before the MSB are ignored. The following binary

representation of the exponent e can be used for validity of this algorithm as:

 e =
i

n






0

1

ei.2
i = ((...((en-1).2 + en-2).2 +...).2 + e1).2 + e0

Therefore the exponentiation can be expressed as:

 Me = M((...((e
n-1

).2 + e
n-2

).2....) .2 + e
1
).2 +e

0
) = ((...((Me

n-1)
2)2.Me

n-2)
2.Me

1)
2.Me

0

For example:

 M23 = M(10111)b = (((((1)2.M)2)2.M)2.M)2.M

The left-to-right algorithm involves log2
e squarings and (n) - 1 multiplications (or log2

e +

(n) -1 multiplications if both operands use the multiplier) when both operations on the initial 1

are ignored. (n) is the number of non-zero bits in the binary representation of e. In a hardware

implementation, this algorithm requires one storage register to keep the intermediate result.

The right-to-Left algorithm: for i from 0 up to k-1, this algorithm first sets C to C.M if ei = 1

and then sets M to M2.

The algorithm can be also written for modular exponentiation as follows :

 The Right-to-Left Exponentiation Algorithm

 C := 1;

 for i = n-1 downto 0 loop

 IF ei = 1 THEN C := M.C mod N;

 M := M2 mod N;

 return C;

where C = Me mod N. According to Knuth [Knu98], al-Kashi an Iranian mathematician stated

this algorithm about 1414 A.D. The method is closely related to the multiplication procedure used

by Egyptian mathematicians as early as 1800 B.C and widely used in Russia in the nineteenth

century. It is often called "Russian peasant method" of multiplication.

This method is easily justified by a consideration of the sequence of exponents in the calculation.

Since:

 e =
i

n






0

1

ei.2
i = 2n-1.en-1 + 2n-1.en-1 +...+21.e1 +20.e0

The exponentiation can be written as:

 Me = M((...((e
0
 + 2

1
.e

1
 +....+ 2

n2
.e

n-2
+2

n1
.e

n-1
) = (Me

0).(M
2.e

1)....(M
2

n2
. e

n-2).(M
2

n1
.e

n-1)

 Me = (M) e
0.(M

2) .e
1....(M

2
n2

)e
n-2.(M

2
n1

)e
n-1

and it corresponds to the algorithm procedure.

For example M23 = M(10111)b = (((((1 . M) . M2) . M4)) .M16).

Ignoring multiplication by the initial 1 and also ignoring the last squaring which will not be used,

the number of multiplications required is log2
e + (n) - 1. Squaring and multiplication can be

performed in parallel in this method [Riv84] [Kor95] [Poc98]. Two extra registers are needed to

keep the partial result and the squaring result.

