Register Transfer Level

« Something between the logic level and the
architecture level

« A convenient way to describe synchronous
sequential systems

« State diagramsfor pros



Hierarchy of Designs

e Thedesign of adigital system happensin
many different levels of abstraction
— Physical level
— Electronic level
— Logic level
— Architectural level
— System level



Theory-Practice

In theory, theory and practice are the same.
In practice they are not

Real systems tend to have many states with
many transitions that depend on many inputs

Simple state diagrams are not enough; we
need a more powerful language



Modularity

« Using better notation is not enough

e \We have to use another design concept
called modularity

« \We partition our design into many modules
each one with its own specifications



Advantages

« Division of labor among members of the
team

e Reuse the design of the modules in other
systems

« Keep the size manageable.



They are not unrelated

 Modules and hierarchies of abstraction are
not unrel ated

« They both try to hide unnecessary
Information.



What we do here

e Design simple modules
e Implement our designsin thelogic level

e Explorevarious possibilities



Components

e Registers (collections of F-F)

e Operations on registers (using combinational
Circuits)

« Control (someone to boss everything around)



Registers

» Registers are collections of F-F that can
execute LOAD and other operations

o Sometimes the other operations are
Incrementing, decrementing, shifting, etc

« Sometimes these operations are done with
the help of separate combinational circuits



For Example

« A 16-bit incrementer requires 16 half adders
— more hardware if we seek efficiency
 |f we need two counters that do not

Increment at the same time we might decide
to let them share the incrementer.



Transfers

e Thisisdone by transfering the datato the
Incrementer

« and then transfering the output of the
Incrementer back to the register



Transfer Notation

e We use statements like
~Rl<= R2

e e.0. R2iscopiedinto R1

« Thetransfer may be conditional
—if (T1=1) then (R1<=R2)



Anything Goes

— R1 <= R2+R3
— R3<=R3+1
—R4<=shl R4
~R5<=0

e Thesmilarity with Verilog isobvious...



Like Verilog

« \We want to describe
— Transfer operations
— Arithmetic operations
— Logic operations
— Shift operations



Clocked Transfer

« Thetransfer happens only at the edge of the
clock

o Before the clock the combinational circuits
are computing the input to the F-F

« After the clock we are computing the F-F
Input for the next state.



All Transfers at Once

« Since all transfers happen at once

« The natural procedural assignment isthe
non-blocking one:
—~R1<=R2
—R2<=R1



L oops

« There aretwo uses of the loops:
— describe test benches
— describe repeated hardware



Example: for loop

module decoder (IN, Y);
input [1:0] IN; //Two binary inputs
output [3:0] Y; //Four binary outputs
reg [3:0] Y;
integer [; /[control variable for loop
always @ (IN)
for(I=0;1<=3;1=1+1)
if IN==1) Y[I]=1;
else Y[I] =0;
endmodule



The Equivalent

e Thefor loop can be replaced by
—_ if (N=00) F[0]=1; else F[0]=0;
—if (N=01) F[1]=1; else F[1
—if (N=10) F[2]=1; else F[2]=0;
—if (N=11) F[3]=1; dlse F[3




Synthesis

e The hardware compiler should know how to
do:

— B =A+C// addition

—assign’Y =S?11:10// 2-1 MUX
—case... /l larger MUX

— always @ (posedge ... ) // edge triggered F-F



The Design Process

« Like any design process, we have two phases
— Compose
— Veify

« Composition is (nowadays) doneinaHDL

« Verification is done (mostly) with
simulations



Various S mulations

« A simulation isjust an approximation of the
reality
e There are several kinds of approximations
— RTL smulations
— Gate level simulations
— Electronic level smulations



Y

g ipti Valid i
HDL desc.rlptlon a 1 Synthesis ol i
> Of design design tools
Y Y
Simulate Simulate
] < Test bench >
RTL design gate-level
design
Y Y
Result Result
Good Good
Needs Needs
correction correction
Y /
Compare »| Fabricate
No match Match 1C

Fig. 8-1 Process of HDL Simulation and Synthesis
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Algorithmic State Machines

« Synchronous sequential circuits can be
thought of as having two parts

— The data part that is concerned with the
processing of the contents of the registers

— The control part that is concerned with the
seguencing of states



The Datapath

Contains all the registers

All the arithmetic etc logic that operates on
the data

All the outputs (to the world and to the logic
unit)

Recalves commands from the control unit



Control Unit

Contains all the “state” F-F
All the logic to decide the next state
Recelves feedback from the data path

Generates commands for things to happen in
the datapath or just outputs its state



External
inputs
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Status conditions

Y

Control
logic

Commands

Y

Input
data

Datapath

Fig. 8-2 Control and Datapath Interaction

Output
data



ASM

« Part of the work to be doneisto
— Define a set of states
— The operations that take place in every state
— And the transitions between the states

« All thisin away that they solve a problem
« Thisiscalled an ASM



ASM Charts

e AN ASM can be described with aHDL

o Can aso be described with a kind of
flowchart

— Similar to s/w flowcharts, but adapted to
hardware



State Box

e Represents a state (of course!)

« Contains
— The symbolic state name
— The binary state name (if available)
— Any number of unconditional operations



Binary
Name code T3 011

Register operation R« 0
or output START
(a) General description (b) Specific example

Fig. 8-3 State Box
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Decision Box

Represents a decision (of course!)
Normally a binary decision
Has one incoming arrow and two outgoing

ne condition Is written inside

ne outcome on the outgoing arrows



Exit path Exit path

Fig. 8-4 Decision Box
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Conditional Box

» Represents aconditional statement (of
course!)

« Always follows adecision box

« Containsthe operations that will be executed
If wereach it



T 001
START

0 1

From exit path of decision box
(reo )
Register operation
or output

T y y 010

F«—E
(a) General description (b) Example with conditional box

Fig. 8-5 Conditional Box
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ASM Block

It Is not what happens to an author that
cannot compose an ASM chart

Represents a compl ete state
Contans one state box

And all associated decision and condition
boxes



Fig. 8-6 ASM Block
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State Diagram

« A state diagram does exactly the same as an
ASM chart

e The ASM chart is better suited for real
problems that may have more detail

« The diagram that follows does the same as
the chart before



Fig. 8-7 State Diagram Equivalent to the ASM Chart of Fig. 8-6
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Timing

o All F-F, both state F-F and registers are

connected to a common clock and triggered
In the same fashion.

« All operations within an ASM block take

place at once, but the results are stored in the
F-F at the clock edge



As a Result

« Max one assignment per F-F per ASM block
e The F-F do not change value in between
clock edges

« A stateisthe time between the (triggering)
clock edges



Clock
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A

~—— Present state T —>

~———

Positive edge of clock —

Next state —>
(Thor T5 or Ty)

Fig. 8-8 Transition Between States




Design Example

« Design asequential circuit that has
— A counter: A[4:1]
—TwoF-F. EandF
—Aninput S
« When the system isintheinitial state and the

Input S becomes 1 the system goes in the
counting state and F and A are reset



Design Example

o If theinput Sis0 and the systemisinthe
Initial state, it remainsin the initial state

e If Inthe counting state, Eisset ISA[3] is1,
o/w reset

e |If Inthe counting state, we go to the output
state if A[3:4]==11



Ty Y Y

Initial state

A« 0
Fe 0O

© 2002 Prentice Hall, Inc.
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Design the Datapath

« \We can design it with state tables etc

e We can design it in an ad hoc fashion
— This often the best



Assumptions

e We have:

— A counter A with synchronous clear

— Two flip-flops E and F of the J-K variety
—Aninput S
« And aso

— The system has three inputs TO, T1, T2 that
correspond to the three states



Let’s Fry Some Bits

e The counter countswhen in state T1

e The counter iIsreset when in state TO and
S=1
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Start

[
> S T() _/
> 44 Control 11
> Az T;
Clock
Iy
B
> C
—> ) K
J — F
> C
K
Ay | Az | Ay |Aq
_ Count
4-bit counter with | CLK Clock
synchronous clear Clear—-A

A

Fig. 8-10 Datapath for Design Example




Fry more Bits

F-FEissetwheninstate T1 and A3=1

- Eisreset whenin state T1 and A3=0
- Fisset when in state T2

- Fisreset when in state TO and S=1



Control Logic

« Wewill see afew techniquesto design the
control logic

e There are many we will not see:
— Elther proprietary
— Or historical



State Table

We need the state table
The state table can be big

For this abysmally small example it has 32
entries

We compress it



The Table

Outputs

Inputs Next

Present
State

State

T1T2T3

S A3 A4 G1 GO

G1 GO

QO O0OOO -

OO O

—— OO OO

Ordrd v - O

OO OO -H O

X X X O+ x

X X O =+ X
O X X X X

OO 1 r v

QOO OO




Tp:if (S=1)then A < 0,F« 0
Ti:A<—A+1

if (A3 =1)thenE « 1

if (A3 =0)then E « 0

A3zA4 =10 Ty: Fe1

(a) State diagram for control (a) Register transfer operations

Fig. 8-11 Register Transfer Level Description of Design Example
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Thelogic

« With abit of symbolic manipulation
—-D1=G1 GOA3 A4
—-DO=G1' GO+SG1 +G1G0O + SGO
« And
—T0=G1 GO
—-T1=G1 GO
—-T12=G1 GO



With Maps

e« The F-Finputsare
—~D1=GI1 GOA3 A4
—-DO0=G1' GO0+ GO'S

« And the outputs are
—T0=G0
—T1=G1'G0O
- 12=G1



With Intuition

e The F-Finputsare:
~D1=T1A3A4
—DO=TOS+T1

« And the outputs are
—T0=G0
—T1=G1G0
- 12=G1



T

v

Clear-A

> C
o
I
G
A D I
Ay
> C
o——
CLK Cir
© 2002 Prentice Hall, Inc. Fig. 8-12 Logic Diagram of Control
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With Verilog

« Behavioral description
— the most abstract
— h/w compiler isthe king

 Structural description
— we have to do the work
— wegiveall the detall



The Preliminaries

module Example_RTL (S,CLK,CIr,E,F,A);
/ISpecify inputs and outputs
//See block diagram Fig. 8-10
input S,CLK,Clr;
output E,F;
output [4:1] A;
/ISpecify system registers
reg [4:1] A; /I A register
reg E, F; //E and F flip-flops
reg [1:0] pstate, nstate; //control register
/[Encode the states
parameter TO = 2'b00, T1 =2'b01, T2 =2'b11;



The Control Section

//State transition for control logic
/ISee state diagram Fig. 8-11(a)
always @(posedge CLK or negedge Clr)
if (~Clr) pstate = TO; //Initial state
else pstate <= nstate; //Clocked operations
always @ (S or A or pstate)
case (pstate)
TO: if(S) nstate = T1;
T1: if(A[3] & A[4]) nstate = T2;
T2: nstate = TO;
default: nstate = TO;
endcase



The Register Transfer Logic

always @(posedge CLK)
case (pstate)
TO: if(S)
begin
A <= 4p0000;
F <= 1'b0;
end
Tl1:
begin
A<=A+1bl;
if (A[3]) E <= 1bl;
else E <= 1D0;
end
T2: F<=1bl;
endcase



Multiplier

o Anextremely useful thing

« An astonishingly complex thing to do If
speed Is important

« An outrageoudly tricky thing to do with
floating point arithmetic



Back to Elementary School

e Let’'smultiply 23 by 19
10111
x 10011

110110101



Still in Elementary School

e Thefirst number is called multiplicant

ne second Is called multiplier

ne result is called product



Register Configuration

We store the multiplicant in Reg. B

We store the multiplier in Reg. Q
Reg. Q will be shifted out to oblivion

The product will be stored half in the
accumulator A and half in Q




Z=1ifP=0

Multiplicand
} Check for Z >
Register B Zero X
A QO
Y P counter
COllt
Parallel adder T E
A n (start)
Y y Sum Multiplier
00— C > Register A > Register QO
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Product

Fig. 8-13 Block Diagram of Binary Multiplier

Control
logic




1 Y
Initial state

0
T, 1
A0
C«0
P—n
T Y \
Pe—P—-1
0 1
Qo
Y
CA<—A + B,C<—C0ut)
T3 A Y
Shift right CAQ, C « O
0 1
Z

© 2002 Prentice Hall, Inc.
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Control Logic

« \We have three choices
— Binary
— Gray Code
— One-hot (1 F-F per state)

« \We have three inputs:
-5, 00(?), Z



We know this stuff...

We can distill the ASM chart into asimple
state diagram

We do the tables
Simplify
And we are done



(a) State diagram

Ty: Initial state

T1:A<0,C—0,P<n

Th:P—P—1
if (Qg)=1then (A— A + B, C « Cyyy)
T5: shift right CAQ, C < 0
(b) Register transfer operations

Fig. 8-15 Control Specifications for Binary Multiplier

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.



How It looks like

« QO can be dealt with separately since it does
not affect the sequence of states but only the
commands to the datapath (e.g. the output of
the control logic)




Control
logic

3— L =0y,

Qo
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Fig. 8-16 Control Block Diagram



The Table

Next

Output

State

TOT1IT2T3

G1 GO

OO OO

OO O —+=HOO

OO HOOO
- — OO OO

OO OO

OO =0

Present
State

Input
S

/

G1 GO

XXX X o
O — X X X X

OO —=HO r—

OC OO v v




Simplify

« Assuming binary state assignment
—-D1=G1' GO+ G1 GO + G1Z
—-DO0=G1GO +GO'S

o Assuming Gray state assignment
- D1=G0+G1Z
-D0=G1G0+G1GO'S



Using the Outputs

« We need adecoder for this since there is not
much minimization for the output circuits

« Plugging the outputsin
—D1=T1+T2+T3Z
—~D0O=T2+T0S

« Does not matter if we use Gray or binary



> C

> €

1

0

0
2X4 1

decoder
2

Qo
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Clock

Fig. 8-17 Logic Diagram of Control for Binary Multiplier Using
a Sequence Register and Decoder



Some Observations

« \We cannot always avoid afull decoder
« Decoders need one gate per state

« Control logic does not always offer much of
a chance for simplification



One F-F per State

 Itisnot awaysas costly as it looks

e Permits direct implementation from the ASM
chart

It makes sense!
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Y ek

> C

Clock
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Fig. 8-18 One Flip-Flop Per State Controller



HDL for Multiplier

module mltp(S,CLK,Clr,Binput,Qinput,C,A,Q,P);
input S,CLK,Clr;
input [4:0] Binput,Qinput; //Data inputs
output C;
output [4:0] A,Q;
output [2:0] P;
/ISystem registers
reg C;
reg [4:0] A,Q,B;
reg [2:0] P;
reg [1:0] pstate, nstate; /[control register
parameter TO=2'b00, T1=2'b01, T2=2'b10, T3=2'b11;
//Combinational circuit
wire Z;
assign Z = ~|P; //Check for zero



State Transitions

always @(negedge CLK or negedge Clr)
if (~Clr) pstate = TO;
else pstate <= nstate;
always @(S or Z or pstate)
case (pstate)
TO: if (S) nstate = T1;
T1: nstate = T2;
T2: nstate = T3;
T3: if (Z) nstate = TO;
else nstate =T2;
endcase



Register Transfer

always @(negedge CLK)
case (pstate)

TO: B <= Binput; /Mnput multiplicand
T1: begin
A <= 5'b00000;
C <=1'b0;
P <=3b101; //Initialize counter to n=5
Q <= Qinput; /MMnput multiplier
end
T2: begin
P<=P-3b001; //Decrement counter
if (Q[OD)
{C,A} <=A+B; //Add multiplicand
end
T3: begin
C<=1b0; //Clear C
A <= {CA[4:1]}; //Shift right A
Q<= {A[0],Q[4:1]};  //Shiftright Q
end

endcase



Design with MUX

e Allow usto minimize the number of
components

e Quite simpleto do.



T | 01
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The Advantages

e MUXes allow usto break the combinational
circuit in many ssmpler smaller ones

« Are among the few waysto design a 3 level
combinational circuit

e Really useful when we have many variables
and not all of them affect every state.



The Table

Present Next Input

State State Conditions MUX'1 MUX 2
G1 GO G1 GO

0 0 0 0 W

0 0 0 1 W 0 w
01 1 0 X .
01 11 X - X
1 0 0 0 VY ,

1 0 1 0 yz’ Yz +yz=y yz

1 0 1 1 yZ
””””” 11 0 1 vyz
1 1 1 0 VY ytyz =y+z Y

1 1 1 1 YyZ




0——0 D
1—1
MUXI1 P> C
Yy—2
Z’ﬁ_/ Sq So
® L4
MUX select
[ 4
St So Gy
w—0 D
x'—1
2
Z —t
'—3
CLK
© 2002 Prentice Hall, Inc. Fig. 820 Control Implementation with Multiplexers
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With One-Hot

« We do thiswith the tried and true method
(glare at the chart til your eyes get dry)
—T0=TO0W + T2V
—T1=TOw+T3y'z
—12=T3y+T1x+T2yZ
—13=T3y'Z +T1X +T2yz




Count the Ones

e Design acircuit that countsthe onesin a
register R1 and stores the result in counter
R2

« The circuit keeps counting and shifting the
contents of R1 out till R1 isall zeros

e R2isinitiaized to all 1s.




TO Y ¥ 00

Initial state

R1 < Input
R2 — All 1's

Tll Y 01
| R2—R2+1
1
Z
0
T, 10

| Shift R10 E |

I Y 11
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We Also Need

e A F-Fto storethe bit shifted out of R1

o A combinational circuit to check if all bits of
R1 are zero.



Start > S T, }
T,
> £ Control 7
— / Yé —
Z=1if
R1=0
Check for

ZCT0
3

Parallel output

Serial input= 0

-

5 D { Shift register R1 E i:(f;rt;fljt
< T
Input data
Output count
CLK T
~ Count

Counter R2 jLoa d input

!
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The Table

Pr. St. N. St. Inp. Cond MUX1 MUX2
G1 GO G1 GO
0O O 0O O S’ 0 S
0 0 o 1 . s
0 1 1 O Z 1 Z
0 1 1 1 A
10 T | I | I
1 1 1 o E EE E
1 1 0 1 E




0—0
Z'—1 G
MUX1 D
1—2
E'—3 > C
Sl SO
R
— T
MUX select B :
decoder 7,
LT
S —10 S] SO
0o —1 Gy
MUX2 D
1 —2
E —3 > C
CLK
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Fig. P8-10 Control State Diagram for Problems 8-10 and 8-11

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.



© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Ty Y y 000

0 X
1
0 Ty 001
| |
1
Thoy vy 010
| |
0 JF\ 1
Ty | 100 \
| | C
J\ C |
: E : |
T 110 !
| | ( )
T7 111 Ts V101

Y

Fig. P8-20 ASM Chart for Problems 8-20




