
  

Register Transfer Level

• Something between the logic level and the 
architecture level

• A convenient way to describe synchronous 
sequential systems

• State diagrams for pros



  

Hierarchy of Designs

• The design of a digital system happens in 
many different levels of abstraction

– Physical level

– Electronic level

– Logic level

– Architectural level

– System level



  

Theory-Practice

• In theory, theory and practice are the same.

• In practice they are not

• Real systems tend to have many states with 
many transitions that depend on many inputs

• Simple state diagrams are not enough; we 
need a more powerful language



  

Modularity

• Using better notation is not enough

• We have to use another design concept 
called modularity

• We partition our design into many modules 
each one with its own specifications



  

Advantages

• Division of labor among members of the 
team

• Reuse the design of the modules in other 
systems

• Keep the size manageable.



  

They are not unrelated

• Modules and hierarchies of abstraction are 
not unrelated

• They both try to hide unnecessary 
information.



  

What we do here

• Design simple modules

• Implement our designs in the logic level

• Explore various possibilities



  

Components

• Registers (collections of F-F)

• Operations on registers (using combinational 
circuits)

• Control (someone to boss everything around)



  

Registers

• Registers are collections of F-F that can 
execute LOAD and other operations

• Sometimes the other operations are 
incrementing, decrementing, shifting, etc

• Sometimes these operations are done with 
the help of separate combinational circuits



  

For Example

• A 16-bit incrementer requires 16 half adders

– more hardware if we seek efficiency

• If we need two counters that do not 
increment at the same time we might decide 
to let them share the incrementer.



  

Transfers

• This is done by transfering the data to the 
incrementer

• and then transfering the output of the 
incrementer back to the register



  

Transfer Notation

• We use statements like

– R1 <=  R2

• e.g. R2 is copied into R1

• The transfer may be conditional

– if (T1=1) then (R1<=R2)



  

Anything Goes

– R1 <= R2+R3

– R3 <= R3+1

– R4 <= shl R4

– R5 <= 0

• The similarity with Verilog is obvious...



  

Like Verilog

• We want to describe

– Transfer operations

– Arithmetic operations

– Logic operations

– Shift operations



  

Clocked Transfer

• The transfer happens only at the edge of the 
clock

• Before the clock the combinational circuits 
are computing the input to the F-F

• After the clock we are computing the F-F 
input for the next state.



  

All Transfers at Once

• Since all transfers happen at once

• The natural procedural assignment is the 
non-blocking one:

– R1 <= R2

– R2 <= R1



  

Loops

• There are two uses of the loops:

– describe test benches

– describe repeated hardware



  

Example: for loop
module decoder (IN, Y);
   input  [1:0] IN;    //Two binary inputs
   output [3:0] Y;    //Four binary outputs
   reg [3:0] Y;
   integer I;          //control variable for loop
   always @ (IN)
        for (I = 0; I <= 3; I = I + 1)
          if (IN == I) Y[I] = 1;
          else Y[I] = 0;
endmodule



  

The Equivalent

• The for loop can be replaced by

– if (N=00) F[0]=1; else F[0]=0;

– if (N=01) F[1]=1; else F[1]=0;

– if (N=10) F[2]=1; else F[2]=0;

– if (N=11) F[3]=1; else F[3]=0;



  

Synthesis

• The hardware compiler should know how to 
do:

– B = A+C // addition

– assign Y = S ? I1 : I0 // 2-1 MUX

– case ... // larger MUX

– always @ (posedge ... ) // edge triggered F-F



  

The Design Process

• Like any design process, we have two phases

– Compose

– Verify

• Composition is (nowadays) done in a HDL

• Verification is done (mostly) with 
simulations



  

Various Simulations

• A simulation is just an approximation of the 
reality

• There are several kinds of approximations

– RTL simulations

– Gate level simulations

– Electronic level simulations



  



  

Algorithmic State Machines

• Synchronous sequential circuits can be 
thought of as having two parts

– The data part that is concerned with the 
processing of the contents of the registers

– The control part that is concerned with the 
sequencing of states



  

The Datapath

• Contains all the registers

• All the arithmetic etc logic that operates on 
the data

• All the outputs (to the world and to the logic 
unit)

• Receives commands from the control unit



  

Control Unit

• Contains all the “state” F-F

• All the logic to decide the next state

• Receives feedback from the data path

• Generates commands for things to happen in 
the datapath or just outputs its state



  



  

ASM

• Part of the work to be done is to

– Define a set of states

– The operations that take place in every state

– And the transitions between the states

• All this in a way that they solve a problem

• This is called an ASM



  

ASM Charts

• An ASM can be described with a HDL

• Can also be described with a kind of 
flowchart

– Similar to s/w flowcharts, but adapted to 
hardware



  

State Box

• Represents a state (of course!)

• Contains

– The symbolic state name

– The binary state name (if available)

– Any number of unconditional operations



  



  

Decision Box

• Represents a decision (of course!)

• Normally a binary decision

• Has one incoming arrow and two outgoing

• The condition is written inside

• The outcome on the outgoing arrows



  



  

Conditional Box

• Represents a conditional statement (of 
course!)

• Always follows a decision box

• Contains the operations that will be executed 
if we reach it



  



  

ASM Block

• It is not what happens to an author that 
cannot compose an ASM chart

• Represents a complete state

• Contains one state box

• And all associated decision and condition 
boxes



  



  

State Diagram

• A state diagram does exactly the same as an 
ASM chart

• The ASM chart is better suited for real 
problems that may have more detail

• The diagram that follows does the same as 
the chart before



  



  

Timing

• All F-F, both state F-F and registers are 
connected to a common clock and triggered 
in the same fashion.

• All operations within an ASM block take 
place at once, but the results are stored in the 
F-F at the clock edge



  

As a Result

• Max one assignment per F-F per ASM block

• The F-F do not change value in between 
clock edges

• A state is the time between the (triggering) 
clock edges



  



  

Design Example

• Design a sequential circuit that has

– A counter:   A[4:1]

– Two F-F:     E and F

– An input S

• When the system is in the initial state and the 
input S becomes 1 the system goes in the 
counting state and F and A are reset



  

Design Example

• If the input S is 0 and the system is in the 
initial state, it remains in the initial state

• If in the counting state, E is set is A[3] is 1, 
o/w reset

• If in the counting state, we go to the output 
state if A[3:4]==11



  



  

Design the Datapath

• We can design it with state tables etc

• We can design it in an ad hoc fashion

– This often the best



  

Assumptions

• We have:

– A counter A with synchronous clear

– Two flip-flops E and F of the J-K variety

– An input S

• And also

– The system has three inputs T0, T1, T2 that 
correspond to the three states



  

Let’s Fry Some Bits

• The counter counts when in state T1

• The counter is reset when in state T0 and 
S=1



  



  

Fry more Bits

• F-F E is set when in state T1 and A3=1

• F-F E is reset when in state T1 and A3=0

• F-F F is set when in state T2

• F-F F is reset when in state T0 and S=1



  

Control Logic

• We will see a few techniques to design the 
control logic

• There are many we will not see:

– Either proprietary

– Or historical



  

State Table

• We need the state table

• The state table can be big

• For this abysmally small example it has 32 
entries

• We compress it



  

The Table

Present
State

Inputs Next
State

Outputs

G1 G0

0    0
0    0
0    1
0    1
0    1
1    1

S  A3 A4

0   x    x
1   x    x
x   0    x
x   1    0
x   1    1
x   x    x

G1 G0

0     0
0     1
0     1
0     1
1     1
0     0

T1 T2 T3

1    0    0
1    0    0
0    1    0
0    1    0
0    1    0
0    0    1



  



  

The logic

• With a bit of symbolic manipulation

– D1 = G1’ G0 A3 A4

– D0 = G1’ G0 + S G1’ + G1 G0’ + S G0’

• And

– T0 = G1’ G0’

– T1 = G1’ G0

– T2 = G1  G0



  

With Maps

• The F-F inputs are

– D1 = G1’ G0 A3 A4

– D0 = G1’G0 + G0’S

• And the outputs are

– T0 = G0’

– T1 = G1’G0

– T2 = G1



  

With Intuition

• The F-F inputs are:

– D1 = T1 A3 A4

– D0 = T0 S + T1

• And the outputs are

– T0 = G0’

– T1 = G1’G0

– T2 = G1



  



  

With Verilog

• Behavioral description

– the most abstract

– h/w compiler is the king

• Structural description

– we have to do the work

– we give all the detail



  

The Preliminaries
module Example_RTL (S,CLK,Clr,E,F,A);
//Specify inputs and outputs 
//See block diagram Fig. 8­10
   input S,CLK,Clr;
   output E,F;
   output [4:1] A;
//Specify system registers
   reg [4:1] A;                //A register
   reg E, F;                   //E and F flip­flops
   reg [1:0] pstate, nstate;   //control register
//Encode the states
   parameter T0 = 2'b00, T1 = 2'b01, T2 = 2'b11;



  

The Control Section
//State transition for control logic
//See state diagram Fig. 8­11(a) 
   always @(posedge CLK or negedge Clr)
      if (~Clr) pstate = T0;    //Initial state
      else pstate <= nstate;    //Clocked operations
   always @ (S or A or pstate)
       case (pstate)
         T0: if(S) nstate = T1;
         T1: if(A[3] & A[4]) nstate = T2;
         T2: nstate = T0;
         default: nstate = T0;
       endcase 



  

The Register Transfer Logic
   always @(posedge CLK)
       case (pstate)
         T0: if(S)
              begin
                 A <= 4'b0000;
                 F <= 1'b0;
              end
         T1: 
              begin
                 A <= A + 1'b1;
                 if (A[3]) E <= 1'b1;
                 else  E <= 1'b0;
              end
         T2:  F <= 1'b1;
      endcase



  

Multiplier

• An extremely useful thing

• An astonishingly complex thing to do if 
speed is important

• An outrageously tricky thing to do with 
floating point arithmetic



  

Back to Elementary School

• Let’s multiply 23 by 19
•      10111

•   x  10011

• ----------

•      10111

•     10111

•  10111

• ----------

•  110110101



  

Still in Elementary School

• The first number is called multiplicant

• The second is called multiplier

• The result is called product



  

Register Configuration

• We store the multiplicant in Reg. B

• We store the multiplier in Reg. Q

• Reg. Q will be shifted out to oblivion

• The product will be stored half in the 
accumulator A and half in Q



  



  



  

Control Logic

• We have three choices

– Binary

– Gray Code

– One-hot (1 F-F per state)

• We have three inputs:

– S, Q0(?), Z



  

We know this stuff...

• We can distill the ASM chart into a simple 
state diagram

• We do the tables

• Simplify

• And we are done



  



  

How it looks like

• Q0 can be dealt with separately since it does 
not affect the sequence of states but only the 
commands to the datapath (e.g. the output of 
the control logic)



  



  

The Table

Present
State

Input
Next
State Output

G1 G0

0    0
0    0
0    1
1    0
1    1
1    1

S   Z

0    X
1    X
X   X
X   X
X   0
X   1

G1 G0

0     0
0     1
1     0
1     1
1     0
0     0

T0 T1 T2 T3

1   0    0    0
1   0    0    0
0   1    0    0
0   0    1    0
0   0    0    1
0   0    0    1



  

Simplify

• Assuming binary state assignment

– D1 = G1’ G0 + G1 G0’ + G1Z’

– D0 = G1 G0’ + G0’S

• Assuming Gray state assignment

– D1 = G0 + G1Z’

– D0 = G1 G0 + G1’G0’S



  

Using the Outputs

• We need a decoder for this since there is not 
much minimization for the output circuits

• Plugging the outputs in

– D1 = T1 + T2 + T3Z’

– D0 = T2 + T0 S

• Does not matter if we use Gray or binary



  



  

Some Observations

• We cannot always avoid a full decoder

• Decoders need one gate per state

• Control logic does not always offer much of 
a chance for simplification



  

One F-F per State

• It is not always as costly as it looks

• Permits direct implementation from the ASM 
chart

• It makes sense!



  



  

HDL for Multiplier
module mltp(S,CLK,Clr,Binput,Qinput,C,A,Q,P);
   input S,CLK,Clr;
   input [4:0] Binput,Qinput;          //Data inputs
   output C;
   output [4:0] A,Q;
   output [2:0] P;
//System registers
   reg C;
   reg [4:0] A,Q,B;
   reg [2:0] P;
   reg [1:0] pstate, nstate;           //control register
   parameter T0=2'b00, T1=2'b01, T2=2'b10, T3=2'b11;
//Combinational circuit
   wire Z;
   assign Z = ~|P;                     //Check for zero



  

State Transitions
  always @(negedge CLK or negedge Clr)
     if (~Clr) pstate = T0;
     else pstate <= nstate;
   always @(S or Z or pstate)
     case (pstate)
       T0: if (S) nstate = T1;
       T1: nstate = T2;
       T2: nstate = T3;
       T3: if (Z) nstate = T0;
           else   nstate = T2;
     endcase



  

Register Transfer
   always @(negedge CLK)
     case (pstate)
       T0: B <= Binput;                //Input multiplicand
       T1: begin
             A <= 5'b00000;
             C <= 1'b0;
             P <= 3'b101;              //Initialize counter to n=5
             Q <= Qinput;              //Input multiplier 
           end 
       T2: begin
             P <= P ­ 3'b001;          //Decrement counter
             if (Q[0]) 
             {C,A} <= A + B;           //Add multiplicand
           end
       T3: begin
             C <= 1'b0;                //Clear C
             A <= {C,A[4:1]};          //Shift right A 
             Q <= {A[0],Q[4:1]};       //Shift right Q
           end 
     endcase



  

Design with MUX

• Allow us to minimize the number of 
components

• Quite simple to do.



  



  

The Advantages

• MUXes allow us to break the combinational 
circuit in many simpler smaller ones

• Are among the few ways to design a 3 level 
combinational circuit

• Really useful when we have many variables 
and not all of them affect every state.



  

The Table
Present
State

Next
State

Input
Conditions MUX 1 MUX 2

G1 G0
0    0
0    0
0    1
0    1
1    0
1    0
1    0
1    1
1    1
1    1

G1 G0
0     0
0     1
1     0
1     1
0     0
1     0
1     1
0     1
1     0
1     1

w’
w
x
x’
y’
yz’
yz
y’ z
y
y’ z’

0

1

yz’ +yz=y

y+y’ z’  = y+z’

w

x’

yz

y’



  



  

With One-Hot

• We do this with the tried and true method 
(glare at the chart til your eyes get dry)

– T0 = T0 w’ + T2 y’

– T1 = T0 w + T3 y’z

– T2 = T3 y + T1 x + T2 yz’

– T3 = T3 y’z’ + T1 x’ + T2 yz



  

Count the Ones

• Design a circuit that counts the ones in a 
register R1 and stores the result in counter 
R2

• The circuit keeps counting and shifting the 
contents of R1 out till R1 is all zeros

• R2 is initialized to all 1s.



  



  

We Also Need

• A F-F to store the bit shifted out of R1

• A combinational circuit to check if all bits of 
R1 are zero.



  



  

The Table

Pr. St.

G1 G0
0      0
0      0
0      1
0      1
1      0
1      1
1      1

N. St.

G1 G0
0      0
0      1
1      0
1      1
1      1
1      0
0      1

Inp. Cond

  S’
  S
  Z
  Z’
  -
  E’
  E

MUX1

0

1

1
E’

MUX2

S

Z’

1
E



  



  



  


