

Register Transfer Level

• Something between the logic level and the
architecture level

• A convenient way to describe synchronous
sequential systems

• State diagrams for pros

Hierarchy of Designs

• The design of a digital system happens in
many different levels of abstraction

– Physical level

– Electronic level

– Logic level

– Architectural level

– System level

Theory-Practice

• In theory, theory and practice are the same.

• In practice they are not

• Real systems tend to have many states with
many transitions that depend on many inputs

• Simple state diagrams are not enough; we
need a more powerful language

Modularity

• Using better notation is not enough

• We have to use another design concept
called modularity

• We partition our design into many modules
each one with its own specifications

Advantages

• Division of labor among members of the
team

• Reuse the design of the modules in other
systems

• Keep the size manageable.

They are not unrelated

• Modules and hierarchies of abstraction are
not unrelated

• They both try to hide unnecessary
information.

What we do here

• Design simple modules

• Implement our designs in the logic level

• Explore various possibilities

Components

• Registers (collections of F-F)

• Operations on registers (using combinational
circuits)

• Control (someone to boss everything around)

Registers

• Registers are collections of F-F that can
execute LOAD and other operations

• Sometimes the other operations are
incrementing, decrementing, shifting, etc

• Sometimes these operations are done with
the help of separate combinational circuits

For Example

• A 16-bit incrementer requires 16 half adders

– more hardware if we seek efficiency

• If we need two counters that do not
increment at the same time we might decide
to let them share the incrementer.

Transfers

• This is done by transfering the data to the
incrementer

• and then transfering the output of the
incrementer back to the register

Transfer Notation

• We use statements like

– R1 <= R2

• e.g. R2 is copied into R1

• The transfer may be conditional

– if (T1=1) then (R1<=R2)

Anything Goes

– R1 <= R2+R3

– R3 <= R3+1

– R4 <= shl R4

– R5 <= 0

• The similarity with Verilog is obvious...

Like Verilog

• We want to describe

– Transfer operations

– Arithmetic operations

– Logic operations

– Shift operations

Clocked Transfer

• The transfer happens only at the edge of the
clock

• Before the clock the combinational circuits
are computing the input to the F-F

• After the clock we are computing the F-F
input for the next state.

All Transfers at Once

• Since all transfers happen at once

• The natural procedural assignment is the
non-blocking one:

– R1 <= R2

– R2 <= R1

Loops

• There are two uses of the loops:

– describe test benches

– describe repeated hardware

Example: for loop
module decoder (IN, Y);
 input [1:0] IN; //Two binary inputs
 output [3:0] Y; //Four binary outputs
 reg [3:0] Y;
 integer I; //control variable for loop
 always @ (IN)
 for (I = 0; I <= 3; I = I + 1)
 if (IN == I) Y[I] = 1;
 else Y[I] = 0;
endmodule

The Equivalent

• The for loop can be replaced by

– if (N=00) F[0]=1; else F[0]=0;

– if (N=01) F[1]=1; else F[1]=0;

– if (N=10) F[2]=1; else F[2]=0;

– if (N=11) F[3]=1; else F[3]=0;

Synthesis

• The hardware compiler should know how to
do:

– B = A+C // addition

– assign Y = S ? I1 : I0 // 2-1 MUX

– case ... // larger MUX

– always @ (posedge ...) // edge triggered F-F

The Design Process

• Like any design process, we have two phases

– Compose

– Verify

• Composition is (nowadays) done in a HDL

• Verification is done (mostly) with
simulations

Various Simulations

• A simulation is just an approximation of the
reality

• There are several kinds of approximations

– RTL simulations

– Gate level simulations

– Electronic level simulations

Algorithmic State Machines

• Synchronous sequential circuits can be
thought of as having two parts

– The data part that is concerned with the
processing of the contents of the registers

– The control part that is concerned with the
sequencing of states

The Datapath

• Contains all the registers

• All the arithmetic etc logic that operates on
the data

• All the outputs (to the world and to the logic
unit)

• Receives commands from the control unit

Control Unit

• Contains all the “state” F-F

• All the logic to decide the next state

• Receives feedback from the data path

• Generates commands for things to happen in
the datapath or just outputs its state

ASM

• Part of the work to be done is to

– Define a set of states

– The operations that take place in every state

– And the transitions between the states

• All this in a way that they solve a problem

• This is called an ASM

ASM Charts

• An ASM can be described with a HDL

• Can also be described with a kind of
flowchart

– Similar to s/w flowcharts, but adapted to
hardware

State Box

• Represents a state (of course!)

• Contains

– The symbolic state name

– The binary state name (if available)

– Any number of unconditional operations

Decision Box

• Represents a decision (of course!)

• Normally a binary decision

• Has one incoming arrow and two outgoing

• The condition is written inside

• The outcome on the outgoing arrows

Conditional Box

• Represents a conditional statement (of
course!)

• Always follows a decision box

• Contains the operations that will be executed
if we reach it

ASM Block

• It is not what happens to an author that
cannot compose an ASM chart

• Represents a complete state

• Contains one state box

• And all associated decision and condition
boxes

State Diagram

• A state diagram does exactly the same as an
ASM chart

• The ASM chart is better suited for real
problems that may have more detail

• The diagram that follows does the same as
the chart before

Timing

• All F-F, both state F-F and registers are
connected to a common clock and triggered
in the same fashion.

• All operations within an ASM block take
place at once, but the results are stored in the
F-F at the clock edge

As a Result

• Max one assignment per F-F per ASM block

• The F-F do not change value in between
clock edges

• A state is the time between the (triggering)
clock edges

Design Example

• Design a sequential circuit that has

– A counter: A[4:1]

– Two F-F: E and F

– An input S

• When the system is in the initial state and the
input S becomes 1 the system goes in the
counting state and F and A are reset

Design Example

• If the input S is 0 and the system is in the
initial state, it remains in the initial state

• If in the counting state, E is set is A[3] is 1,
o/w reset

• If in the counting state, we go to the output
state if A[3:4]==11

Design the Datapath

• We can design it with state tables etc

• We can design it in an ad hoc fashion

– This often the best

Assumptions

• We have:

– A counter A with synchronous clear

– Two flip-flops E and F of the J-K variety

– An input S

• And also

– The system has three inputs T0, T1, T2 that
correspond to the three states

Let’s Fry Some Bits

• The counter counts when in state T1

• The counter is reset when in state T0 and
S=1

Fry more Bits

• F-F E is set when in state T1 and A3=1

• F-F E is reset when in state T1 and A3=0

• F-F F is set when in state T2

• F-F F is reset when in state T0 and S=1

Control Logic

• We will see a few techniques to design the
control logic

• There are many we will not see:

– Either proprietary

– Or historical

State Table

• We need the state table

• The state table can be big

• For this abysmally small example it has 32
entries

• We compress it

The Table

Present
State

Inputs Next
State

Outputs

G1 G0

0 0
0 0
0 1
0 1
0 1
1 1

S A3 A4

0 x x
1 x x
x 0 x
x 1 0
x 1 1
x x x

G1 G0

0 0
0 1
0 1
0 1
1 1
0 0

T1 T2 T3

1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1

The logic

• With a bit of symbolic manipulation

– D1 = G1’ G0 A3 A4

– D0 = G1’ G0 + S G1’ + G1 G0’ + S G0’

• And

– T0 = G1’ G0’

– T1 = G1’ G0

– T2 = G1 G0

With Maps

• The F-F inputs are

– D1 = G1’ G0 A3 A4

– D0 = G1’G0 + G0’S

• And the outputs are

– T0 = G0’

– T1 = G1’G0

– T2 = G1

With Intuition

• The F-F inputs are:

– D1 = T1 A3 A4

– D0 = T0 S + T1

• And the outputs are

– T0 = G0’

– T1 = G1’G0

– T2 = G1

With Verilog

• Behavioral description

– the most abstract

– h/w compiler is the king

• Structural description

– we have to do the work

– we give all the detail

The Preliminaries
module Example_RTL (S,CLK,Clr,E,F,A);
//Specify inputs and outputs
//See block diagram Fig. 8­10
 input S,CLK,Clr;
 output E,F;
 output [4:1] A;
//Specify system registers
 reg [4:1] A; //A register
 reg E, F; //E and F flip­flops
 reg [1:0] pstate, nstate; //control register
//Encode the states
 parameter T0 = 2'b00, T1 = 2'b01, T2 = 2'b11;

The Control Section
//State transition for control logic
//See state diagram Fig. 8­11(a)
 always @(posedge CLK or negedge Clr)
 if (~Clr) pstate = T0; //Initial state
 else pstate <= nstate; //Clocked operations
 always @ (S or A or pstate)
 case (pstate)
 T0: if(S) nstate = T1;
 T1: if(A[3] & A[4]) nstate = T2;
 T2: nstate = T0;
 default: nstate = T0;
 endcase

The Register Transfer Logic
 always @(posedge CLK)
 case (pstate)
 T0: if(S)
 begin
 A <= 4'b0000;
 F <= 1'b0;
 end
 T1:
 begin
 A <= A + 1'b1;
 if (A[3]) E <= 1'b1;
 else E <= 1'b0;
 end
 T2: F <= 1'b1;
 endcase

Multiplier

• An extremely useful thing

• An astonishingly complex thing to do if
speed is important

• An outrageously tricky thing to do with
floating point arithmetic

Back to Elementary School

• Let’s multiply 23 by 19
• 10111

• x 10011

• ----------

• 10111

• 10111

• 10111

• ----------

• 110110101

Still in Elementary School

• The first number is called multiplicant

• The second is called multiplier

• The result is called product

Register Configuration

• We store the multiplicant in Reg. B

• We store the multiplier in Reg. Q

• Reg. Q will be shifted out to oblivion

• The product will be stored half in the
accumulator A and half in Q

Control Logic

• We have three choices

– Binary

– Gray Code

– One-hot (1 F-F per state)

• We have three inputs:

– S, Q0(?), Z

We know this stuff...

• We can distill the ASM chart into a simple
state diagram

• We do the tables

• Simplify

• And we are done

How it looks like

• Q0 can be dealt with separately since it does
not affect the sequence of states but only the
commands to the datapath (e.g. the output of
the control logic)

The Table

Present
State

Input
Next
State Output

G1 G0

0 0
0 0
0 1
1 0
1 1
1 1

S Z

0 X
1 X
X X
X X
X 0
X 1

G1 G0

0 0
0 1
1 0
1 1
1 0
0 0

T0 T1 T2 T3

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

Simplify

• Assuming binary state assignment

– D1 = G1’ G0 + G1 G0’ + G1Z’

– D0 = G1 G0’ + G0’S

• Assuming Gray state assignment

– D1 = G0 + G1Z’

– D0 = G1 G0 + G1’G0’S

Using the Outputs

• We need a decoder for this since there is not
much minimization for the output circuits

• Plugging the outputs in

– D1 = T1 + T2 + T3Z’

– D0 = T2 + T0 S

• Does not matter if we use Gray or binary

Some Observations

• We cannot always avoid a full decoder

• Decoders need one gate per state

• Control logic does not always offer much of
a chance for simplification

One F-F per State

• It is not always as costly as it looks

• Permits direct implementation from the ASM
chart

• It makes sense!

HDL for Multiplier
module mltp(S,CLK,Clr,Binput,Qinput,C,A,Q,P);
 input S,CLK,Clr;
 input [4:0] Binput,Qinput; //Data inputs
 output C;
 output [4:0] A,Q;
 output [2:0] P;
//System registers
 reg C;
 reg [4:0] A,Q,B;
 reg [2:0] P;
 reg [1:0] pstate, nstate; //control register
 parameter T0=2'b00, T1=2'b01, T2=2'b10, T3=2'b11;
//Combinational circuit
 wire Z;
 assign Z = ~|P; //Check for zero

State Transitions
 always @(negedge CLK or negedge Clr)
 if (~Clr) pstate = T0;
 else pstate <= nstate;
 always @(S or Z or pstate)
 case (pstate)
 T0: if (S) nstate = T1;
 T1: nstate = T2;
 T2: nstate = T3;
 T3: if (Z) nstate = T0;
 else nstate = T2;
 endcase

Register Transfer
 always @(negedge CLK)
 case (pstate)
 T0: B <= Binput; //Input multiplicand
 T1: begin
 A <= 5'b00000;
 C <= 1'b0;
 P <= 3'b101; //Initialize counter to n=5
 Q <= Qinput; //Input multiplier
 end
 T2: begin
 P <= P ­ 3'b001; //Decrement counter
 if (Q[0])
 {C,A} <= A + B; //Add multiplicand
 end
 T3: begin
 C <= 1'b0; //Clear C
 A <= {C,A[4:1]}; //Shift right A
 Q <= {A[0],Q[4:1]}; //Shift right Q
 end
 endcase

Design with MUX

• Allow us to minimize the number of
components

• Quite simple to do.

The Advantages

• MUXes allow us to break the combinational
circuit in many simpler smaller ones

• Are among the few ways to design a 3 level
combinational circuit

• Really useful when we have many variables
and not all of them affect every state.

The Table
Present
State

Next
State

Input
Conditions MUX 1 MUX 2

G1 G0
0 0
0 0
0 1
0 1
1 0
1 0
1 0
1 1
1 1
1 1

G1 G0
0 0
0 1
1 0
1 1
0 0
1 0
1 1
0 1
1 0
1 1

w’
w
x
x’
y’
yz’
yz
y’ z
y
y’ z’

0

1

yz’ +yz=y

y+y’ z’ = y+z’

w

x’

yz

y’

With One-Hot

• We do this with the tried and true method
(glare at the chart til your eyes get dry)

– T0 = T0 w’ + T2 y’

– T1 = T0 w + T3 y’z

– T2 = T3 y + T1 x + T2 yz’

– T3 = T3 y’z’ + T1 x’ + T2 yz

Count the Ones

• Design a circuit that counts the ones in a
register R1 and stores the result in counter
R2

• The circuit keeps counting and shifting the
contents of R1 out till R1 is all zeros

• R2 is initialized to all 1s.

We Also Need

• A F-F to store the bit shifted out of R1

• A combinational circuit to check if all bits of
R1 are zero.

The Table

Pr. St.

G1 G0
0 0
0 0
0 1
0 1
1 0
1 1
1 1

N. St.

G1 G0
0 0
0 1
1 0
1 1
1 1
1 0
0 1

Inp. Cond

 S’
 S
 Z
 Z’
 -
 E’
 E

MUX1

0

1

1
E’

MUX2

S

Z’

1
E

