Register Transfer Level

- Something between the logic level and the architecture level
- A convenient way to describe synchronous sequential systems
- State diagrams for pros

Hierarchy of Designs

- The design of a digital system happens in many different levels of abstraction
 - Physical level
 - Electronic level
 - Logic level
 - Architectural level
 - System level

Theory-Practice

- In theory, theory and practice are the same.
- In practice they are not
- Real systems tend to have many states with many transitions that depend on many inputs
- Simple state diagrams are not enough; we need a more powerful language

Modularity

- Using better notation is not enough
- We have to use another design concept called modularity
- We partition our design into many modules each one with its own specifications

Advantages

- Division of labor among members of the team
- Reuse the design of the modules in other systems
- Keep the size manageable.

They are not unrelated

- Modules and hierarchies of abstraction are not unrelated
- They both try to hide unnecessary information.

What we do here

- Design simple modules
- Implement our designs in the logic level
- Explore various possibilities

Components

- Registers (collections of F-F)
- Operations on registers (using combinational circuits)
- Control (someone to boss everything around)

Registers

- Registers are collections of F-F that can execute LOAD and other operations
- Sometimes the other operations are incrementing, decrementing, shifting, etc
- Sometimes these operations are done with the help of separate combinational circuits

For Example

- A 16-bit incrementer requires 16 half adders
 more hardware if we seek efficiency
- If we need two counters that do not increment at the same time we might decide to let them share the incrementer.

Transfers

- This is done by transferring the data to the incrementer
- and then transfering the output of the incrementer back to the register

Transfer Notation

• We use statements like

-R1 <= R2

- e.g. R2 is copied into R1
- The transfer may be conditional

- if (T1=1) then (R1<=R2)

Anything Goes

- $R1 \le R2 + R3$
- **–** R3 <= R3+1
- **–** R4 <= shl R4
- -R5 <= 0
- The similarity with Verilog is obvious...

Like Verilog

- We want to describe
 - Transfer operations
 - Arithmetic operations
 - Logic operations
 - Shift operations

Clocked Transfer

- The transfer happens only at the edge of the clock
- Before the clock the combinational circuits are computing the input to the F-F
- After the clock we are computing the F-F input for the next state.

All Transfers at Once

- Since all transfers happen at once
- The natural procedural assignment is the non-blocking one:

$$-R1 <= R2$$

 $-R2 \le R1$

Loops

- There are two uses of the loops:
 - describe test benches
 - describe repeated hardware

Example: for loop

```
module decoder (IN, Y);

input [1:0] IN; //Two binary inputs

output [3:0] Y; //Four binary outputs

reg [3:0] Y;

integer I; //control variable for loop

always @ (IN)

for (I = 0; I <= 3; I = I + 1)

if (IN == I) Y[I] = 1;

else Y[I] = 0;

endmodule
```

The Equivalent

- The **for** loop can be replaced by
 - if (N=00) F[0]=1; else F[0]=0;
 - if (N=01) F[1]=1; else F[1]=0;
 - if (N=10) F[2]=1; else F[2]=0;
 - if (N=11) F[3]=1; else F[3]=0;

Synthesis

- The hardware compiler should know how to do:
 - B = A+C // addition
 - **assign** Y = S ? I1 : I0 // 2-1 MUX
 - case ... // larger MUX
 - always @ (posedge ...) // edge triggered F-F

The Design Process

- Like any design process, we have two phases
 - Compose
 - Verify
- Composition is (nowadays) done in a HDL
- Verification is done (mostly) with simulations

Various Simulations

- A simulation is just an approximation of the reality
- There are several kinds of approximations
 - RTL simulations
 - Gate level simulations
 - Electronic level simulations

Fig. 8-1 Process of HDL Simulation and Synthesis

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Algorithmic State Machines

- Synchronous sequential circuits can be thought of as having two parts
 - The *data* part that is concerned with the processing of the contents of the registers
 - The *control* part that is concerned with the sequencing of states

The Datapath

- Contains all the registers
- All the arithmetic etc logic that operates on the data
- All the outputs (to the world and to the logic unit)
- Receives commands from the control unit

Control Unit

- Contains all the "state" F-F
- All the logic to decide the next state
- Receives feedback from the data path
- Generates commands for things to happen in the datapath or just outputs its state

Fig. 8-2 Control and Datapath Interaction

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

ASM

- Part of the work to be done is to
 - Define a set of states
 - The operations that take place in every state
 - And the transitions between the states
- All this in a way that they solve a problem
- This is called an ASM

ASM Charts

- An ASM can be described with a HDL
- Can also be described with a kind of flowchart
 - Similar to s/w flowcharts, but adapted to hardware

State Box

- Represents a state (of course!)
- Contains
 - The symbolic state name
 - The binary state name (if available)
 - Any number of unconditional operations

Fig. 8-3 State Box

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Decision Box

- Represents a decision (of course!)
- Normally a binary decision
- Has one incoming arrow and two outgoing
- The condition is written inside
- The outcome on the outgoing arrows

Fig. 8-4 Decision Box

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Conditional Box

- Represents a conditional statement (of course!)
- Always follows a decision box
- Contains the operations that will be executed if we reach it

Fig. 8-5 Conditional Box

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

ASM Block

- It is not what happens to an author that cannot compose an ASM chart
- Represents a complete state
- Contains one state box
- And all associated decision and condition boxes

Fig. 8-6 ASM Block

State Diagram

- A state diagram does exactly the same as an ASM chart
- The ASM chart is better suited for real problems that may have more detail
- The diagram that follows does the same as the chart before

Fig. 8-7 State Diagram Equivalent to the ASM Chart of Fig. 8-6

Timing

- All F-F, both state F-F and registers are connected to a common clock and triggered in the same fashion.
- All operations within an ASM block take place at once, but the results are stored in the F-F at the clock edge

As a Result

- Max one assignment per F-F per ASM block
- The F-F do not change value in between clock edges
- A state is the time between the (triggering) clock edges

Fig. 8-8 Transition Between States

Design Example

- Design a sequential circuit that has
 - A counter: A[4:1]
 - Two F-F: E and F
 - An input S
- When the system is in the initial state and the input S becomes 1 the system goes in the counting state and F and A are reset

Design Example

- If the input S is 0 and the system is in the initial state, it remains in the initial state
- If in the counting state, E is set is A[3] is 1, o/w reset
- If in the counting state, we go to the output state if A[3:4]==11

Fig. 8-9 ASM Chart for Design Example

Design the Datapath

- We can design it with state tables etc
- We can design it in an *ad hoc* fashion

– This often the best

Assumptions

- We have:
 - A counter A with <u>synchronous</u> clear
 - Two flip-flops E and F of the J-K variety
 - An input S
- And also
 - The system has three inputs T0, T1, T2 that correspond to the three states

Let's Fry Some Bits

- The counter counts when in state T1
- The counter is reset when in state T0 and S=1

Fry more Bits

- F-F E is set when in state T1 and A3=1
- F-F E is reset when in state T1 and A3=0
- F-F F is set when in state T2
- F-F F is reset when in state T0 and S=1

Control Logic

- We will see a few techniques to design the control logic
- There are many we will not see:
 - Either proprietary
 - Or historical

State Table

- We need the state table
- The state table can be big
- For this abysmally small example it has 32 entries
- We compress it

The Table

Present State	Inputs	Next State	Outputs
G1 G0	S A3 A4	G1 G0	T1 T2 T3
0 0	0 x x	0 0 0 1	$\begin{array}{ccc}1&0&0\\1&0&0\end{array}$
$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array}$	1 x x x 0 x	$\begin{array}{ccc} 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{cccc}1&0&0\\0&1&0\end{array}$
0 1	x 1 0	0 1	0 1 0
0 1	x 1 1	1 1	0 1 0
1 1	ххх	0 0	0 0 1

(a) State diagram for control

(a) Register transfer operations

Fig. 8-11 Register Transfer Level Description of Design Example

The logic

- With a bit of symbolic manipulation -D1 = G1' G0 A3 A4
 - -D0 = G1' G0 + S G1' + G1 G0' + S G0'
- And
 - -T0 = G1' G0'
 - -T1 = G1' G0

-T2 = G1 G0

With Maps

- The F-F inputs are
 - -D1 = G1' G0 A3 A4
 - -D0 = G1'G0 + G0'S
- And the outputs are
 - T0 = G0'
 - -T1 = G1'G0

-T2 = G1

With Intuition

- The F-F inputs are:
 - D1 = T1 A3 A4
 - -D0 = T0 S + T1
- And the outputs are
 - T0 = G0'
 - -T1 = G1'G0

-T2 = G1

With Verilog

- Behavioral description
 - the most abstract
 - h/w compiler is the king
- Structural description
 - we have to do the work
 - we give all the detail

The Preliminaries

module Example_RTL (S,CLK,Clr,E,F,A);
//Specify inputs and outputs
//See block diagram Fig. 8-10
input S,CLK,Clr;
output E,F;
output [4:1] A;
//Specify system registers
reg [4:1] A; //A register
reg E, F; //E and F flip-flops
reg [1:0] pstate, nstate; //control register
//Encode the states
parameter T0 = 2'b00, T1 = 2'b01, T2 = 2'b11;

The Control Section

```
//State transition for control logic
//See state diagram Fig. 8-11(a)
always @(posedge CLK or negedge Clr)
if (~Clr) pstate = T0; //Initial state
else pstate <= nstate; //Clocked operations
always @ (S or A or pstate)
case (pstate)
T0: if(S) nstate = T1;
T1: if(A[3] & A[4]) nstate = T2;
T2: nstate = T0;
default: nstate = T0;
endcase</pre>
```

The Register Transfer Logic

```
always @(posedge CLK)

case (pstate)

T0: if(S)

begin

A \le 4'b0000;

F \le 1'b0;

end

T1:

begin

A \le A + 1'b1;

if (A[3]) E \le 1'b1;

else E \le 1'b0;

end

T2: F \le 1'b1;

endcase
```

Multiplier

- An extremely useful thing
- An astonishingly complex thing to do if speed is important
- An outrageously tricky thing to do with floating point arithmetic

Back to Elementary School

- Let's multiply 23 by 19
 - 10111
 - x 10011
 - -----
 - 10111
 - 10111
 - 10111
 - -----
 - 110110101

Still in Elementary School

- The first number is called multiplicant
- The second is called multiplier
- The result is called product

Register Configuration

- We store the multiplicant in Reg. B
- We store the multiplier in Reg. Q
- Reg. Q will be shifted out to oblivion
- The product will be stored half in the accumulator A and half in Q

Fig. 8-13 Block Diagram of Binary Multiplier

Fig. 8-14 ASM Chart for Binary Multiplier

Control Logic

- We have three choices
 - Binary
 - Gray Code
 - One-hot (1 F-F per state)
- We have three inputs:
 - S, Q0(?), Z

We know this stuff...

- We can distill the ASM chart into a simple state diagram
- We do the tables
- Simplify
- And we are done

(a) State diagram

 T_0 : Initial state

 $T_1: A \leftarrow 0, C \leftarrow 0, P \leftarrow n$

 $T_2: P \leftarrow P - 1$

if $(Q_0) = 1$ then $(A \leftarrow A + B, C \leftarrow C_{out})$

 T_3 : shift right *CAQ*, $C \leftarrow 0$

(b) Register transfer operations

Fig. 8-15 Control Specifications for Binary Multiplier

How it looks like

• Q0 can be dealt with separately since it does not affect the sequence of states but only the commands to the datapath (e.g. the output of the control logic)

Fig. 8-16 Control Block Diagram

The Table

Present State	Input	Next State	Output
G1 G0	S Z	G1 G0	T0 T1 T2 T3
$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	0 X 1 X X X X X X 0 X 1	$\begin{array}{cccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Simplify

Assuming binary state assignment
D1 = G1' G0 + G1 G0' + G1Z'

-D0 = G1 G0' + G0'S

• Assuming Gray state assignment

-D1 = G0 + G1Z'

-D0 = G1 G0 + G1'G0'S

Using the Outputs

- We need a decoder for this since there is not much minimization for the output circuits
- Plugging the outputs in
 - -D1 = T1 + T2 + T3Z'
 - -D0 = T2 + T0 S
- Does not matter if we use Gray or binary

Fig. 8-17 Logic Diagram of Control for Binary Multiplier Using a Sequence Register and Decoder

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Some Observations

- We cannot always avoid a full decoder
- Decoders need one gate per state
- Control logic does not always offer much of a chance for simplification

One F-F per State

- It is not always as costly as it looks
- Permits direct implementation from the ASM chart
- It makes sense!

Fig. 8-18 One Flip-Flop Per State Controller

HDL for Multiplier

```
module mltp(S,CLK,Clr,Binput,Qinput,C,A,Q,P);
 input S,CLK,Clr;
 input [4:0] Binput, Qinput;
                                 //Data inputs
 output C;
 output [4:0] A,Q;
 output [2:0] P;
//System registers
 reg C;
 reg [4:0] A,Q,B;
 reg [2:0] P;
 reg [1:0] pstate, nstate;
                               //control register
  parameter T0=2'b00, T1=2'b01, T2=2'b10, T3=2'b11;
//Combinational circuit
 wire Z;
  assign Z = \sim |P;
                             //Check for zero
```

State Transitions

always @(negedge CLK or negedge Clr)
if (~Clr) pstate = T0;
else pstate <= nstate;
always @(S or Z or pstate)
case (pstate)
T0: if (S) nstate = T1;
T1: nstate = T2;
T2: nstate = T3;
T3: if (Z) nstate = T0;
else nstate = T2;
endcase</pre>

Register Transfer

```
always @(negedge CLK)
 case (pstate)
  T0: B \leq Binput;
                            //Input multiplicand
  T1: begin
     A <= 5'b00000;
     C <= 1'b0;
     P <= 3'b101;
                          //Initialize counter to n=5
     Q <= Qinput;
                           //Input multiplier
    end
  T2: begin
     P <= P - 3'b001;
                           //Decrement counter
     if (Q[0])
     \{C,A\} \le A + B;
                             //Add multiplicand
    end
  T3: begin
     C <= 1'b0;
                         //Clear C
                             //Shift right A
     A \le \{C, A[4:1]\};
     Q \le \{A[0], Q[4:1]\};
                             //Shift right Q
    end
 endcase
```

Design with MUX

- Allow us to minimize the number of components
- Quite simple to do.

Fig. 8-19 Example of ASM Chart with Four Control Inputs

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

The Advantages

- MUXes allow us to break the combinational circuit in many simpler smaller ones
- Are among the few ways to design a 3 level combinational circuit
- Really useful when we have many variables and not all of them affect every state.

The Table

Present State	Next State	Input Conditions	MUX 1	MUX 2
G1 G0	G1 G0			
0 0	0 0	w'		
0 0	0 1	W	0	W
0 1	1 0	X		
0 1	1 1	x'		X'
1 0	0 0	У'		
1 0	1 0	yz'	yz'+yz=y	уz
1 0	1 1	yz		
1 1	0 1	y'z		!
1 1	1 0	У	y+y'z' = y+z'	У'
1 1	1 1	y'z'		

Fig. 8-20 Control Implementation with Multiplexers

With One-Hot

• We do this with the tried and true method (glare at the chart til your eyes get dry)

$$-T0 = T0 w' + T2 y'$$

- -T1 = T0 w + T3 y'z
- -T2 = T3 y + T1 x + T2 yz'
- -T3 = T3 y'z' + T1 x' + T2 yz

Count the Ones

- Design a circuit that counts the ones in a register R1 and stores the result in counter R2
- The circuit keeps counting and shifting the contents of R1 out till R1 is all zeros
- R2 is initialized to all 1s.

Fig. 8-21 ASM Chart for Count-of-Ones Circuit

We Also Need

- A F-F to store the bit shifted out of R1
- A combinational circuit to check if all bits of R1 are zero.

Fig. 8-22 Block Diagram for Count-of-Ones

The Table

Pr.	St.	N. St.		Inp. Cond	MUX1	MUX2
G1	G0	G1	G0			
0	0	0	0	S'	0	S
0	0	0		S		
0	1	1	0	Z	1	Z'
0	1	1	1	Z'		
1	0	1	1	-	1	1
1	1	1	0	E'	E'	E
1	1	0	1	E		

Fig. 8-23 Control Implementation for Count-of-Ones Circuit

Fig. P8-10 Control State Diagram for Problems 8-10 and 8-11

Fig. P8-20 ASM Chart for Problems 8-20