
George Mason UniversityECE 448 – FPGA and ASIC Design with VHDL

Combinational-Circuit Building

Blocks

Data Flow Modeling of

Combinational Logic

ECE 448

Lecture 3

2ECE 448 – FPGA and ASIC Design with VHDL

Reading

• S. Brown and Z. Vranesic, Fundamentals of Digital
Logic with VHDL Design

Chapter 6, Combinational-Circuit Building Blocks

Chapter 5.5, Design of Arithmetic Circuits Using

CAD Tools

• P. Chu, FPGA Prototyping by VHDL Examples

Chapter 3, RT-level combinational circuit

Required

Recommended

3ECE 448 – FPGA and ASIC Design with VHDL

Modeling Wires and Buses

4ECE 448 – FPGA and ASIC Design with VHDL

Signals

SIGNAL a : STD_LOGIC;

SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0);

wire

a

bus

b

1

8

5ECE 448 – FPGA and ASIC Design with VHDL

Merging wires and buses

SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL b: STD_LOGIC_VECTOR(4 DOWNTO 0);

SIGNAL c: STD_LOGIC;

SIGNAL d: STD_LOGIC_VECTOR(9 DOWNTO 0);

d <= a & b & c;

4

5

10

a

b

c

d = a || b || c

6ECE 448 – FPGA and ASIC Design with VHDL

Splitting buses

SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL b: STD_LOGIC_VECTOR(4 DOWNTO 0);

SIGNAL c: STD_LOGIC;

SIGNAL d: STD_LOGIC_VECTOR(9 DOWNTO 0);

a <= d(9 downto 6);

b <= d(5 downto 1);

c <= d(0);

4

5

10

a = d9..6

b = d5..1

c = d0

d

7ECE 448 – FPGA and ASIC Design with VHDL

Fixed Shifters & Rotators

8ECE 448 – FPGA and ASIC Design with VHDL

Fixed Logical Shift Right in VHDL

A(3) A(2) A(1) A(0)

‘0’ A(3) A(2) A(1)

SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

A

C <= '0' & A(3 downto 1);

C

4

4

A

C

>>1

L

9ECE 448 – FPGA and ASIC Design with VHDL

Fixed Arithmetic Shift Right in VHDL

A(3) A(2) A(1) A(0)

A(3) A(2) A(1)

SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

A

C

4

4

A

C

>>1

A(3)

A

C = A(3) & A(3 downto 1);

10ECE 448 – FPGA and ASIC Design with VHDL

Fixed Logical Shift Left in VHDL

A(3) A(2) A(1) A(0)

SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

A

C

4

4

A

C

<<1

L

A(2) A(1) A(0) ‘0’

C = A(2 downto 0) & '0';

11ECE 448 – FPGA and ASIC Design with VHDL

Fixed Rotation Left in VHDL

A(3) A(2) A(1) A(0)

A(2) A(1) A(0) A(3)

SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

A
4

4

A

C

<<< 1

C

C = A(2 downto 0) & A(3);

12ECE 448 – FPGA and ASIC Design with VHDL

Wanted: y = ab + cd

Incorrect

y <= a and b or c and d ;

equivalent to

y <= ((a and b) or c) and d ;

equivalent to

y = (ab + c)d

Correct

y <= (a and b) or (c and d) ;

No Implied Precedence

13ECE 448 – FPGA and ASIC Design with VHDL

Cascade of two multiplexers

s1

w
3

w
1

0

1

s2

w
2

0

1 y

y <= w1 WHEN s1 = '1' ELSE

w2 WHEN s2 = '1' ELSE

w3 ;

VHDL:

14ECE 448 – FPGA and ASIC Design with VHDL

compare a = bc

Incorrect

… when a = b and c else …

equivalent to

… when (a = b) and c else …

Correct

… when a = (b and c) else …

Priority of logic and relational operators

15ECE 448 – FPGA and ASIC Design with VHDL

Priority Encoder

w 0

w 3

y 0

y 1

-

0

0

1

0

1

0

w0 y1

-

y0

1 1

0

1

1

1

1

z

1

-

-

0

-

w1

0

1

-

0

-

w2

0

0

1

0

-

w3

0

0

0

0

1

z

w 1

w 2
w

y

y <= "11" WHEN w(3) = '1' ELSE

"10" WHEN w(2) = '1' ELSE

"01" WHEN w(1) = '1' ELSE

"00" ;

z <= '0' WHEN w = "0000" ELSE '1' ;

16ECE 448 – FPGA and ASIC Design with VHDL

VHDL code for a Priority Encoder entity

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

z : OUT STD_LOGIC) ;

END priority ;

ARCHITECTURE dataflow OF priority IS

BEGIN

y <= "11" WHEN w(3) = '1' ELSE

"10" WHEN w(2) = '1' ELSE

"01" WHEN w(1) = '1' ELSE

"00" ;

z <= '0' WHEN w = "0000" ELSE '1' ;

END dataflow ;

17ECE 448 – FPGA and ASIC Design with VHDL

Adders

18

Adder mod 216

16 16

X Y

16

S

19

VHDL code for an Adder mod 216

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.numeric_std.all ;

ENTITY adder16 IS

PORT (X : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;

Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)) ;

END adder16 ;

ARCHITECTURE dataflow OF adder16 IS

BEGIN

S <= std_logic_vector(unsigned(X) + unsigned(Y));

END dataflow ;

20

Signed and Unsigned Types

Behave exactly like

STD_LOGIC_VECTOR

plus, they determine whether a given vector

should be treated as a signed or unsigned number.

Require

USE ieee.numeric_std.all;

21

16-bit Unsigned Adder

16 16

X Y

16

CinCout

S

+

22

Addition of Unsigned Numbers (1)

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.numeric_std.all ;

ENTITY adder16 IS

PORT (Cin : IN STD_LOGIC ;

X : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;

Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;

Cout : OUT STD_LOGIC) ;

END adder16 ;

23

Addition of Unsigned Numbers (3)

ARCHITECTURE dataflow OF adder16 IS

signal USum: unsigned(16 DOWNTO 0) ;

signal UCin: unsigned(0 downto 0);

BEGIN

UCin(0) <= Cin;

USum <= unsigned('0' & X) + unsigned(Y) + UCin;

S <= std_logic_vector(USum(15 downto 0));

Cout <= USum(16) ;

END dataflow ;

RTL Hardware Design

by P. Chu

Chapter 3 24

IEEE numeric_std package

• How to infer arithmetic operators?

• In standard VHDL:

signal a, b, sum: integer;

. . .

sum <= a + b;

• What’s wrong with integer data type?

RTL Hardware Design

by P. Chu

Chapter 3 25

• IEEE numeric_std package: define integer as a
an array of elements of std_logic

• Two new data types: unsigned, signed

• The array interpreted as an unsigned or signed
binary number

• E.g.,
signal x, y: signed(15 downto 0);

• Need invoke package to use the data type
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

RTL Hardware Design

by P. Chu

Chapter 3 26

Overloaded operators in

IEEE numeric_std package

RTL Hardware Design

by P. Chu

Chapter 3 27

• E.g.,

RTL Hardware Design

by P. Chu

Chapter 3 28

Type conversion

• Std_logic_vector, unsigned, signed are

defined as an array of element of std_logic

• They considered as three different data types

in VHDL

• Type conversion between data types:

– type conversion function

– Type casting (for “closely related” data types)

RTL Hardware Design

by P. Chu

Chapter 3 29

Type conversion between number-

related data types

RTL Hardware Design

by P. Chu

Chapter 3 30

• E.g.
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

. . .

signal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);

signal u1, u2, u3, u4, u6, u7: unsigned(3 downto 0);

signal sg: signed(3 downto 0);

RTL Hardware Design

by P. Chu

Chapter 3 31

– Ok

u3 <= u2 + u1; --- ok, both operands unsigned

u4 <= u2 + 1; --- ok, operands unsigned and natural

– Wrong

u5 <= sg; -- type mismatch

u6 <= 5; -- type mismatch

– Fix

u5 <= unsigned(sg); -- type casting

u6 <= to_unsigned(5,4); -- conversion function

RTL Hardware Design

by P. Chu

Chapter 3 32

– Wrong

u7 <= sg + u1; -- + undefined over the types

– Fix

u7 <= unsigned(sg) + u1; -- ok, but be careful

– Wrong

s3 <= u3; -- type mismatch

s4 <= 5; -- type mismatch

– Fix

s3 <= std_logic_vector(u3); -- type casting

s4 <= std_logic_vector(to_unsigned(5,4));

RTL Hardware Design

by P. Chu

Chapter 3 33

– Wrong

s5 <= s2 + s1; + undefined over std_logic_vector

s6 <= s2 + 1; + undefined

– Fix

s5 <= std_logic_vector(unsigned(s2) + unsigned(s1));

s6 <= std_logic_vector(unsigned(s2) + 1);

34ECE 448 – FPGA and ASIC Design with VHDL

Multipliers

35

Unsigned vs. Signed Multiplication

1111

1111x

11100001

15

15x

225

1111

1111x

00000001

-1

-1x

1

Unsigned Signed

36

8x8-bit Unsigned Multiplier

8 8

a b

16

c U

*

37

8x8-bit Signed Multiplier

8 8

a b

16

c S

*

38

8x8-bit Unsigned and Signed Multiplier

8 8

a b

16

cu

16

cs

39

Multiplication of signed and unsigned

numbers
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all ;

entity multiply is

port(

a : in STD_LOGIC_VECTOR(7 downto 0);

b : in STD_LOGIC_VECTOR(7 downto 0);

cu : out STD_LOGIC_VECTOR(15 downto 0);

cs : out STD_LOGIC_VECTOR(15 downto 0)

);

end multiply;

architecture dataflow of multiply is

begin

-- signed multiplication

cs <= STD_LOGIC_VECTOR(SIGNED(a)*SIGNED(b));

-- unsigned multiplication

cu <= STD_LOGIC_VECTOR(UNSIGNED(a)*UNSIGNED(b));

end dataflow;

40ECE 448 – FPGA and ASIC Design with VHDL

ROM

41ECE 448 – FPGA and ASIC Design with VHDL

3

16

Addr

C

8x16

ROM

Dout

ROM 8x16 example (1)

42

ROM 8x16 example (2)

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY rom IS

PORT (

Addr : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

Dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END rom;

43

ARCHITECTURE dataflow OF rom IS

SIGNAL temp: INTEGER RANGE 0 TO 7;

TYPE vector_array IS ARRAY (0 to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

(X”800A",

X"D459",

X"A870",

X"7853",

X"650D",

X"642F",

X"F742",

X"F548");

BEGIN

temp <= to_integer(unsigned(Addr));

Dout <= memory(temp);

END dataflow;

ROM 8x16 example (3)

44

ARCHITECTURE dataflow OF rom IS

TYPE vector_array IS ARRAY (0 to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

(X"800A",

X"D459",

X"A870",

X"7853",

X"650D",

X"642F",

X"F742",

X"F548");

BEGIN

Dout <= memory(to_integer(unsigned(Addr)));

END dataflow;

ROM 8x16 example (4)

George Mason UniversityECE 448 – FPGA and ASIC Design with VHDL

Sequential-Circuit Building Blocks

ECE 448

Lecture 4

Constants & Packages

Mixing Description Styles

46ECE 448 – FPGA and ASIC Design with VHDL

Reading

• P. Chu, FPGA Prototyping by VHDL Examples

Chapter 4, Regular Sequential Circuit

• S. Brown and Z. Vranesic, Fundamentals of Digital
Logic with VHDL Design

Chapter 7, Flip-Flops, Registers, Counters,

and a Simple Processor

Required

Recommended

47ECE 448 – FPGA and ASIC Design with VHDL

Counters

48

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.numeric_std.all ;

ENTITY upcount IS

PORT (Clear, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)) ;

END upcount ;

ARCHITECTURE behavioral OF upcount IS

SIGNAL Count : unsigned(1 DOWNTO 0);

BEGIN

upcount: PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

IF Clear = '1' THEN

Count <= "00" ;

ELSE

Count <= Count + 1 ;

END IF ;

END IF;

END PROCESS;

Q <= std_logic_vector(Count);

END behavioral;

2-bit up-counter with synchronous reset

Q
Clear

Clock

upcount

2

49

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.numeric_std.all ;

ENTITY upcount_ar IS

PORT (Clock, Resetn, Enable : IN STD_LOGIC ;

Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)) ;

END upcount_ar ;

4-bit up-counter with asynchronous reset (1)

Q

Enable

Clock
upcount

4

Resetn

50

ARCHITECTURE behavioral OF upcount _ar IS

SIGNAL Count : UNSIGNED (3 DOWNTO 0) ;

BEGIN

PROCESS (Clock, Resetn)

BEGIN

IF Resetn = '0' THEN

Count <= "0000" ;

ELSIF rising_edge(Clock) THEN

IF Enable = '1' THEN

Count <= Count + 1 ;

END IF ;

END IF ;

END PROCESS ;

Q <= std_logic_vector(Count) ;

END behavioral ;

4-bit up-counter with asynchronous reset (2)

Q

Enable

Clock
upcount

4

Resetn

51ECE 448 – FPGA and ASIC Design with VHDL

Shift Registers

52ECE 448 – FPGA and ASIC Design with VHDL

Shift register – internal structure

D Q
Sin

Clock

D Q D Q D Q

Q(3) Q(2) Q(1) Q(0)

Enable

53ECE 448 – FPGA and ASIC Design with VHDL

Shift Register With Parallel Load

D(3)

D Q

Clock

Enable

Sin
D(2)

D Q

D(1)

D Q

D(0)

D Q

Q(0)Q(1)Q(2)Q(3)

Load

54ECE 448 – FPGA and ASIC Design with VHDL

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY shift4 IS

PORT (D : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

Enable : IN STD_LOGIC ;

Load : IN STD_LOGIC ;

Sin : IN STD_LOGIC ;

Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END shift4 ;

4-bit shift register with parallel load (1)

Q

Enable

Clock

shift4

4

D

Load

Sin

4

55ECE 448 – FPGA and ASIC Design with VHDL

ARCHITECTURE behavioral OF shift4 IS

SIGNAL Qt : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN

PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

IF Enable = ‘1’ THEN

IF Load = '1' THEN

Qt <= D ;

ELSE

Qt <= Sin & Qt(3 downto 1);

END IF ;

END IF;

END IF ;

END PROCESS ;

Q <= Qt;

END behavioral ;

4-bit shift register with parallel load (2)

Q

Enable

Clock

shift4

4

D

Load

Sin

4

56ECE 448 – FPGA and ASIC Design with VHDL

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY shiftn IS

GENERIC (N : INTEGER := 8) ;

PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Enable : IN STD_LOGIC ;

Load : IN STD_LOGIC ;

Sin : IN STD_LOGIC ;

Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END shiftn ;

N-bit shift register with parallel load (1)

Q

Enable

Clock

shiftn

N

D

Load

Sin

N

57ECE 448 – FPGA and ASIC Design with VHDL

ARCHITECTURE behavioral OF shiftn IS

SIGNAL Qt: STD_LOGIC_VECTOR(N-1 DOWNTO 0);

BEGIN

PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

IF Enable = ‘1’ THEN

IF Load = '1' THEN

Qt <= D ;

ELSE

Qt <= Sin & Qt(N-1 downto 1);

END IF ;

END IF;

END IF ;

END PROCESS ;

Q <= Qt;

END behavior al;

N-bit shift register with parallel load (2)

Q

Enable

Clock

shiftn

N

D

Load

Sin

N

58ECE 448 – FPGA and ASIC Design with VHDL

Sequential Logic Synthesis

for

Beginners

59

For Beginners

Use processes with very simple structure only

to describe

- registers

- shift registers

- counters

- state machines.

Use examples discussed in class as a template.

Create generic entities for registers, shift registers, and

counters, and instantiate the corresponding components in

a higher level circuit using GENERIC MAP PORT MAP.

Supplement sequential components with

combinational logic described using concurrent statements.

60ECE 448 – FPGA and ASIC Design with VHDL

Sequential Logic Synthesis

for

Intermediates

61

For Intermmediates

1. Use Processes with IF and CASE statements only. Do

not use LOOPS or VARIABLES.

2. Sensitivity list of the PROCESS should include only

signals that can by themsleves change the outputs of

the sequential circuit (typically, clock and asynchronous

set or reset)

3. Do not use PROCESSes without sensitivity list

(they can be synthesizable, but make simulation

inefficient)

62

For Intermmediates (2)

Given a single signal, the assignments to this signal should

only be made within a single process block in order to avoid

possible conflicts in assigning values to this signal.

Process 1: PROCESS (a, b)

BEGIN

y <= a AND b;

END PROCESS;

Process 2: PROCESS (a, b)

BEGIN

y <= a OR b;

END PROCESS;

George Mason UniversityECE 448 – FPGA and ASIC Design with VHDL

Non-synthesizable VHDL

64ECE 448 – FPGA and ASIC Design with VHDL

Delays

Delays are not synthesizable

Statements, such as

wait for 5 ns

a <= b after 10 ns

will not produce the required delay, and

should not be used in the code intended

for synthesis.

65ECE 448 – FPGA and ASIC Design with VHDL

Initializations

Declarations of signals (and variables)

with initialized values, such as

SIGNAL a : STD_LOGIC := ‘0’;

cannot be synthesized, and thus should

be avoided.

If present, they will be ignored by the

synthesis tools.

Use set and reset signals instead.

66ECE 448 – FPGA and ASIC Design with VHDL

Dual-edge triggered register/counter (1)

In FPGAs register/counter can change only

at either rising (default) or falling edge of the

clock.

Dual-edge triggered clock is not synthesizable

correctly, using either of the descriptions

provided below.

67ECE 448 – FPGA and ASIC Design with VHDL

Dual-edge triggered register/counter (2)

PROCESS (clk)

BEGIN

IF (clk’EVENT AND clk=‘1’) THEN

counter <= counter + 1;

ELSIF (clk’EVENT AND clk=‘0’) THEN

counter <= counter + 1;

END IF;

END PROCESS;

68ECE 448 – FPGA and ASIC Design with VHDL

Dual-edge triggered register/counter (3)

PROCESS (clk)

BEGIN

IF (clk’EVENT) THEN

counter <= counter + 1;

END IF;

END PROCESS;

PROCESS (clk)

BEGIN

counter <= counter + 1;

END PROCESS;

