ECE 448
L ecture 3

Combinational-Circuit Building
Blocks

Data Flow Modeling of
Combinational Logic

ECE 448 — FPGA and ASIC Design with VHDL George Mason University

Reading

Required
* P. Chu, FPGA Prototyping by VHDL Examples
Chapter 3, RT-level combinational circuit

Recommended
« S. Brown and Z. Vranesic, Fundamentals of Digital
Logic with VHDL Design
Chapter 6, Combinational-Circuit Building Blocks
Chapter 5.5, Design of Arithmetic Circuits Using
CAD Tools

ECE 448 — FPGA and ASIC Design with VHDL 2

Modeling Wires and Buses

Signals

SIGNAL a: STD_LOGIC;

a

/
/

- wire

SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0);

b

8 bus

ECE 448 — FPGA and ASIC Design with VHDL

Merging wires and buses

10
|

d=al|b]|c

SIGNAL a: STD LOGIC VECTOR (3 DOWNTO 0) ;
SIGNAL b: STD LOGIC VECTOR (4 DOWNTO 0) ;
SIGNAL c: STD LOGIC;

SIGNAL d: STD LOGIC VECTOR (9 DOWNTO 0) ;

d <= a & b & c;

ECE 448 — FPGA and ASIC Design with VHDL

Splitting buses

a=dg g
; 10
— b=ds ,
c=d,
STIGNAL STD LOGIC VECTOR (3 DOWNTO 0) ;

a
SIGNAL b: STD LOGIC VECTOR (4 DOWNTO 0) ;
SIGNAL c: STD LOGIC;
SIGNAL d: STD LOGIC VECTOR (9 DOWNTO 0) ;

a <= d(9 downto 6);
b <= d(5 downto 1);
c <= d(0);

ECE 448 — FPGA and ASIC Design with VHDL

Fixed Shifters & Rotators

Fixed Logical Shift Right in VHDL

SIGNAL A: STD_LOGIC VECTOR(3 DOWNTO 0);
SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

Jf 4 AB) A(R) A1) A(0)
A |
>>1
C L
% 4
‘0 AB) AQ) A1)

C<='0"'& A(3 downto 1);

ECE 448 — FPGA and ASIC Design with VHDL

Fixed Arithmetic Shift Right in VHDL

SIGNAL A: STD_LOGIC VECTOR(3 DOWNTO 0);
SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

Jf 4 AB) A(R) A1) A(0)
L .
>>1
C A
% 4
ABR) AB) A(2) A(L)

C=A3) & A(Bdownto 1);

ECE 448 — FPGA and ASIC Design with VHDL

Fixed Logical Shift Left in VHDL

SIGNAL A: STD_LOGIC VECTOR(3 DOWNTO 0);
SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

Jf . AB) A(2) A(l) A(0)

| OO OO A

<<]1

%4 OO OO C
A(2) A(1l) A() ‘O

C =A(2 downto 0) & '0’;

ECE 448 — FPGA and ASIC Design with VHDL 10

Fixed Rotation Left in VHDL

SIGNAL A: STD_LOGIC VECTOR(3 DOWNTO 0);
SIGNAL C: STD_LOGIC_VECTOR(3 DOWNTO 0);

Jf 4 ABB) A(2) A1) A(0)
. . A
A
<<< 1
C
T °
A(2) A(1) A(0) A(3)

C = A(2 downto 0) & A(3);

ECE 448 — FPGA and ASIC Design with VHDL 11

No Implied Precedence

Wanted: y =ab + cd
Incorrect

y<=aandborcandd;
equivalent to

y <=((@aand b)orc)and d;
equivalent to
y = (ab + c)d

Correct
y <= (aand b) or (cand d) ;

ECE 448 — FPGA and ASIC Design with VHDL

12

Cascade of two multiplexers

N\

0

N
3—O
w 11
v

s2

VHDL:

1

1

s1

y<=wl WHEN sl = "1"ELSE
w2 WHEN s2 = "1" ELSE

w3 ;

ECE 448 — FPGA and ASIC Design with VHDL

13

Priority of logic and relational operators

compare a=Dbc
Incorrect
...whena=Dband celse ...
equivalent to
...when (a=Db)and celse ...

Correct
...whena=(bandc)else ...

ECE 448 — FPGA and ASIC Design with VHDL

14

Priority Encoder

S
hi—
I -1,
VT —w, & y <="11" WHEN w(3) = '1' ELSE
—{ w, z f— 10" WHEN w(2) = '1' ELSE
- 01" WHEN w(1) = '1' ELSE
00" :
Vg o M ")1 o 2 z <="0" WHEN w = ""0000"" ELSE '1" :
0000 - -0
000 1|00 1
0 0 1 - 0 1 1
0 1 - - 1 0 1
1 - - - 1 1 1

ECE 448 — FPGA and ASIC Design with VHDL

15

VHDL code for a Priority Encoder entity

LIBRARY ieee ;
USE ieee.std_logic_1164.all;

ENTITY priority IS
PORT (w :IN STD _LOGIC_VECTOR(3 DOWNTO0);
y :0OUT STD LOGIC VECTOR(1DOWNTO0);
z .0OUT STD_LOGIC);
END priority ;

ARCHITECTURE dataflow OF priority IS
BEGIN
y<= "11"WHENw(3) ='1' ELSE
"10" WHEN w(2) ='1"' ELSE
"01" WHEN w(1) ='1"' ELSE
"00" ;
z<="'0"WHENw ="0000" ELSE "'1" ;
END dataflow :

ECE 448 — FPGA and ASIC Design with VHDL 16

Adders

Adder mod 216

VHDL code for an Adder mod 216

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;

ENTITY adderl16 IS

PORT (X - IN STD LOGIC VECTOR(15 DOWNTO 0);
Y - IN STD LOGIC VECTOR(15 DOWNTO 0) ;
S :OUT STD _LOGIC VECTOR(15 DOWNTO 0))
END adderl16 ;

ARCHITECTURE dataflow OF adder16 IS
BEGIN

S <=std_logic_vector(unsigned(X) + unsigned(Y));
END dataflow ;

19

Signed and Unsigned Types

Behave exactly like
STD LOGIC _VECTOR
plus, they determine whether a given vector
should be treated as a signed or unsigned number.
Require
USE ieee.numeric_std.all;

20

16-bit Unsigned Adder

21

Addition of Unsigned Numbers (1)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;

ENTITY adderl16 IS
PORT (Cin
X
Y
S
Cout
END adderl6 ;

- IN
- IN
- IN
- OUT
- OUT

STD_LOGIC ;

STD_LOGIC_VECTOR(15 DOWNTO 0) ;
STD_LOGIC_VECTOR(15 DOWNTO 0) ;
STD_LOGIC_VECTOR(15 DOWNTO 0) ;

STD_LOGIC):

22

Addition of Unsigned Numbers (3)

ARCHITECTURE dataflow OF adder16 IS
signal USum: unsigned(16 DOWNTO 0) ;
signal UCin: unsigned(0 downto 0);
BEGIN
UCin(0) <= Cin;
USum <= unsigned('0" & X) + unsigned(Y) + UCin;
S <=std_logic_vector(USum(15 downto 0));
Cout <= USum(16) ;
END dataflow ;

23

IEEE numeric_std package

* How to Infer arithmetic operators?

 In standard VHDL.:
sighal a, b, sum: integer;

sum <=a + b;
* What's wrong with integer data type?

RTL Hardware Design Chapter 3
by P. Chu

24

* |EEE numeric_std package: define integer as a
an array of elements of std_logic

 Two new data types: unsigned, signed

* The array interpreted as an unsigned or signed
binary number

- E.Q.,
signal x, y: signed(15 downto 0);

* Need invoke package to use the data type
library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

RTL Hardware Design Chapter 3 25
by P. Chu

Overloaded operators In

IEEE numeric_std package

overloaded description data type data type data type
operator of operand a of operand b of result
abs a absolute value signed signed

- a negation

a *x b

a/ b unsigned unsigned. natural unsigned
a mod b arithmetic unsigned. natural unsigned unsigned
a rem b operation signed signed. integer signed
a+ b signed. integer signed signed
a->b

a=>b

a/=b unsigned unsigned. natural boolean
a<b relational unsigned. natural unsigned boolean
a <=b operation signed signed. integer boolean
a>b signed. integer signed boolean
a > Db

RTL Hardware Design Chapter 3 26

by P. Chu

RTL Hardware Design
by P. Chu

C

d:

unsigned (7 downto 0);

Chapter 3

27

Type conversion

« Std_logic_vector, unsigned, signed are
defined as an array of element of std_logic

* They considered as three different data types
iIn VHDL
 Type conversion between data types:

— type conversion function
— Type casting (for “closely related” data types)

RTL Hardware Design Chapter 3 28
by P. Chu

Type conversion between number-
related data types

data type of a to data type conversion function / type casting
unsigned. signed std_logic_vector std_logic_vector(a)
signed, std_logic_vector unsigned unsigned(a)
unsigned. signed std_logic_vector std_logic_vector(a)
unsigned, signed integer to_integer(a)
natural unsigned to_unsigned(a, size)
integer signed to_signed(a, size)
RTL Hardware Design Chapter 3 29

by P. Chu

* E.Q.
library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

signhal s1, s2, s3, s4, sb5, s6: std_logic_vector(3 downto 0);
signhal ul, u2, u3, u4, u6, u7: unsigned(3 downto 0);
signal sg: signed(3 downto 0);

RTL Hardware Design Chapter 3 30
by P. Chu

— Ok
u3 <= u2 + ul; --- ok, both operands unsigned
ud <=u2 +1; --- ok, operands unsigned and natural

— Wrong

ub <= sg; -- type mismaitch

u6 <=5; --type mismatch

— Fix

ub <= unsigned(sg); -- type casting

u6 <= to_unsigned(5,4); -- conversion function

RTL Hardware Design Chapter 3 31
by P. Chu

— Wrong

u/7 <=sg + ul; --+ undefined over the types
— Fix

u7 <= unsigned(sg) + ul; -- ok, but be careful

— Wrong

s3 <= u3; -- type mismatch

s4 <=5; --type mismatch

— Fix

s3 <= std_logic_vector(u3); -- type casting
s4 <= std_logic_vector(to_unsigned(5,4));

RTL Hardware Design Chapter 3 32
by P. Chu

— Wrong

sb <=s2 + sl,; + undefined over std_logic_vector

S6 <=s2 + 1, + undefined

— Fix

s5 <= std_logic_vector(unsigned(s2) + unsigned(sl));
s6 <= std_logic_vector(unsigned(s2) + 1);

RTL Hardware Design Chapter 3 33
by P. Chu

Multipliers

Unsigned vs. Signed Multiplication

Unsigned Sighed
1111 15 1111 -1
x 1111 x 15 x 1111 X -1

11100001 225 00000001 1

35

8x8-bit Unsigned Multiplier

36

8x8-bit Signed Multiplier

37

8x8-bit Unsigned and Signed Multiplier

38

Multiplication of signed and unsigned

numbers

LIBRARY ieee;
USE ieee.std logic_1164.all;
USE ieee.numeric_std.all ;

entity multiply is
port(
a:in STD_LOGIC_VECTOR(7 downto 0);
b:in STD _LOGIC_VECTOR(7 downto 0);
cu :out STD_LOGIC _VECTOR(15 downto 0);
cs:out STD _LOGIC_VECTOR(15 downto 0)
);
end multiply;

architecture dataflow of multiply is
begin

-- signed multiplication
cs <= STD_LOGIC_VECTOR(SIGNED(a)*SIGNED(b));

-- unsigned multiplication
cu <= STD_LOGIC_VECTOR(UNSIGNED(a)*UNSIGNED(b));
end dataflow;

39

ROM 8x16 example (1)

ECE 448 — FPGA and ASIC Design with VHDL

41

ROM 8x16 example (2)

LIBRARY ieee;
USE ieee.std logic_1164.all;
USE ieee.numeric_std.all;

ENTITY rom IS
PORT (

Addr : IN STD_LOGIC_VECTOR(2 DOWNTO 0):
Dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

END rom;

42

ROM 8x16 example (3)

ARCHITECTURE dataflow OF rom IS
SIGNAL temp: INTEGER RANGE 0 TO 7;
TYPE vector_array IS ARRAY (0to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);
CONSTANT memory : vector_array :=
(X"800A",
X"D459",
X"A870",
X"7853",
X"650D",
X"642F",
X"F742",
X"F548");

BEGIN

temp <=to_integer(unsigned(Addr));
Dout <= memory(temp);

END dataflow:;

43

ROM 8x16 example (4)

ARCHITECTURE dataflow OF rom IS

TYPE vector_array IS ARRAY (0to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

(X"800A",

X"D459",
X"A870",
X"7853",
X"650D",
X"642F",
X"F742",
X"F548");

BEGIN
Dout <= memory(to_integer(unsigned(Addr)));

END dataflow:;

44

ECE 448
Lecture 4

Sequential-Circuit Building Blocks

Constants & Packages

Mixing Description Styles

ECE 448 — FPGA and ASIC Design with VHDL George Mason University

Reading

Required

* P. Chu, FPGA Prototyping by VHDL Examples
Chapter 4, Regular Sequential Circuit

Recommended

« S. Brown and Z. Vranesic, Fundamentals of Digital
Logic with VHDL Design

Chapter 7, Flip-Flops, Registers, Counters,
and a Simple Processor

ECE 448 — FPGA and ASIC Design with VHDL 46

Counters

2-bit up-counter with synchronous reset

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;
ENTITY upcount IS
PORT (Clear, Clock - IN STD_LOGIC;
Q - OUT STD_LOGIC_VECTOR(1 DOWNTODO0));
END upcount ;

ARCHITECTURE behavioral OF upcount IS
SIGNAL Count : unsigned(1 DOWNTO 0);

BEGIN Cl 2
upcount: PROCESS (Clock) car d—r—
BEGIN

IF rising_edge(Clock) THEN
IF Clear ='1' THEN
Count <="00";
Count<=Count +1;
END IF;
END IF;
END PROCESS;
Q <=std_logic_vector(Count);
END behavioral;

upcount

48

4-bit up-counter with asynchronous reset (1)

LIBRARY ieee;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;

ENTITY upcount_ar IS
PORT (Clock, Resetn, Enable :IN STD _LOGIC;
Q : OUT STD_LOGIC VECTOR (3 DOWNTO 0)) ;

END upcount_ar ;

Enable 4

Q—+—

——> Clock
upcount
Resetn

T

49

4-bit up-counter with asynchronous reset (2)

ARCHITECTURE behavioral OF upcount _ar IS

SIGNAL Count : UNSIGNED (3 DOWNTO 0) ;

BEGIN
PROCESS (Clock, Resetn)
BEGIN
IF Resetn ='0' THEN
Count <= ""0000" ;

ELSIF rising_edge(Clock) THEN

IF Enable ='1"' THEN
Count<=Count + 1 ; l
END IF; Enable 4
END IF; /
END PROCESS ; Q
Q <=std_logic_vector(Count) ; ——D Clock
END behavioral ; upcount

Resetn

T

50

Shift Registers

Shift register — internal structure

Q(3) Q(2)
Sin D O ‘ D ‘ ‘
cock [E7— [BT—' [

Q(1)

Q(0)

|

ECE 448 — FPGA and ASIC Design with VHDL

52

Shift Register With Parallel Load

LLoad

D(?O—ﬁ, D(2 D(1 D(]):D_L
Sin—
[D Q D Q D Q D Q
— oD > > D>
Clock
Enable . : |
Q(3) Q(2) Q(1) Q(0)

ECE 448 — FPGA and ASIC Design with VHDL 53

4-bit shift register with parallel load (1)

LIBRARY ieee ;
USE ieee.std_logic_1164.all

ENTITY shift4 IS

PORT(D . IN STD LOGIC_VECTOR(3 DOWNTO 0) ;
Enable :IN STD _LOGIC;
Load . IN STD LOGIC;
Sin . IN STD LOGIC;
Clock :IN STD_LOGIC;
Q . OUT STD LOGIC_VECTOR(3 DOWNTO0));
END shift4 ;

4 Enable 4
— b o +—
—| | oad
—Sin _
shift4
4>I>CIock

ECE 448 — FPGA and ASIC Design with VHDL

54

4-bit shift register with parallel load (2)

ARCHITECTURE behavioral OF shift4 IS
SIGNAL Qt: STD_LOGIC VECTOR(3 DOWNTO 0);

BEGIN 4 Enable 4
PROCESS (Clock) —4 b ol——
Pesil IE rising_edge(Clock) THEN -oad

rising_edge(Cloc .
IF Enable = ‘1’ THEN >IN <hiftd
IF Load =" THEN — Clack
Qt<=D;
ELSE
Qt <= Sin & Qt(3 downto 1);
END IF :
END IF;
END IF ;
END PROCESS

Q<=Q¢;
END behavioral ;

ECE 448 — FPGA and ASIC Design with VHDL 55

N-bit shift register with parallel load (1)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY shiftn IS
GENERIC (N : INTEGER :=8) ;
PORT (D:INSTD LOGIC VECTOR(N-1 DOWNTO 0);
Enable :IN STD _LOGIC;

|_oad - IN STD LOGIC;
Sin . IN STD_LOGIC;
Clock :IN STD LOGIC;
Q :OUT STD LOGIC VECTOR(N-1 DOWNTO0));
END shiftn ;
N Enable N
——{p Q—+—
———{|oad
—Sin
shiftn
4>I>CIock

ECE 448 — FPGA and ASIC Design with VHDL 56

N-bit shift register with parallel load (2)

ARCHITECTURE behavioral OF shiftn IS
SIGNAL Qt: STD_LOGIC VECTOR(N-1 DOWNTO 0);

N procEsS (Clock)) [Enaple | N
BEGIN b o
IF rising_edge(Clock) THEN —|Load
IF Enable = ‘1 THEN —Sin shiftn
IF Load —Qlt l—IEN \ Clock
ELSE
Qt <= Sin & Qt(N-1 downto 1);
END IF ;
END IF;
END IF ;
END PROCESS ;
Q<=Qxt;

END behavior al;

ECE 448 — FPGA and ASIC Design with VHDL 57

Sequential Logic Synthesis
for
Beginners

For Beginners

Use processes with very simple structure only
to describe

- registers

- shift registers

- counters

- state machines.
Use examples discussed in class as a template.
Create generic entities for registers, shift registers, and
counters, and instantiate the corresponding components in
a higher level circuit using GENERIC MAP PORT MAP.
Supplement sequential components with
combinational logic described using concurrent statements.

59

Sequential Logic Synthesis
for
Intermediates

For Intermmediates

1. Use Processes with IF and CASE statements only. Do
not use LOOPS or VARIABLES.

2. Sensitivity list of the PROCESS should include only
signals that can by themsleves change the outputs of
the sequential circuit (typically, clock and asynchronous
set or reset)

3. Do not use PROCESSes without sensitivity list

(they can be synthesizable, but make simulation
iInefficient)

61

For Intermmediates (2)

Given a single signal, the assignments to this signal should
only be made within a single process block in order to avoid
possible conflicts in assigning values to this signal.

“Rrocess 1: PROCESS (a, b)
BEGFN\
y <= a%AND b:
END PROCESS;
~

~
Process 2. PROCE\SS (a, b)
BEGIN R
y <=a OR b; RN
END PROCESS; S o

62

Non-synthesizable VHDL

ECE 448 — FPGA and ASIC Design with VHDL George Mason University

Delays

Delays are not synthesizable

Statements, such as

wait for 5ns

a <= Db after 10 ns
will not produce the required delay, and
should not be used in the code intended
for synthesis.

ECE 448 — FPGA and ASIC Design with VHDL

64

Initializations

Declarations of sighals (and variables)
with initialized values, such as

SIGNAL a:STD LOGIC := ‘0°;
cannot be synthesized, and thus should
be avoided.

If present, they will be ignored by the
synthesis tools.

Use set and reset signals instead.

ECE 448 — FPGA and ASIC Design with VHDL

65

Dual-edge triggered register/counter (1)

In FPGAS register/counter can change only
at either rising (default) or falling edge of the
clock.

Dual-edge triggered clock is not synthesizable
correctly, using either of the descriptions
provided below.

ECE 448 — FPGA and ASIC Design with VHDL 66

Dual-edge triggered register/counter (2)

~
~

PROCESS (clk)

BEGIN ~ “~._
IF (cIEVENT AND clk="1’) THEN
counter <= couﬁt‘e+c3r 1;
ELSIF (clkEVENT AND (;Ik=‘\0\’) THEN
counter <= counter +1; ~~.
END IF; S

END PROCESS; NS

ECE 448 — FPGA and ASIC Design with VHDL

67

Dual-edge triggered register/counter (3)

PROCESS (clk)
BEGTN\\
IF (cKEVENT) THEN
counter << counter + 1;
END IF; e
END PROCESS; AR

~
~

~
~

PROCESS (clk)
BEGIN “~._

counter <=gounter + 1;
END PROCESS; ~~_

~
~
~
.

ECE 448 — FPGA and ASIC Design with VHDL

