
VHDL

Quick

Review

Parviz Keshavarzi

Feb, 2022

VLSI Design Course VHDL ReviewSemnan University 2

Acknowledgement

These slides used or are derived from the

following source:

 Dr. Karam Chatha’s VHDL course taught at

Arizona State University.

 Melnik

 Jason D. Bakos “VHDL and HDL Designer Primer”

university of South Carolina

 Tuft Slides

 Nitin Yogi, Digital Logic Circuits course

(yoginit@auburn.edu)

 ECE 448 George Mason University

mailto:yoginit@auburn.edu

VHDL In a Glance

Part 1:

VLSI Design Course VHDL ReviewSemnan University

VHDL Program Structure

 Every VHDL program consists of two main

parts:

 Entity

 Architecture

 Entity describes Inputs and outputs of a

design

 Architecture describes functionality of a

design

4

VLSI Design Course VHDL ReviewSemnan University 5

VHDL Program Structure

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

VHDL Program Structure Example

ENTITY AndOrGates IS

PORT (A, B, D : IN BIT;

E : OUT BIT) ;

END AndOrGates;

ARCHITECTURE dataflow OF AndOrGates IS

SIGNAL C: BIT;

BEGIN

C <= A AND B;

E <= C OR D;

END dataflow ;

target_signal <= expression;

<=

• Concurrent signal assignment

• Data-flow VHDL Example:

VLSI Design Course VHDL ReviewSemnan University 7

VHDL Description of

Combinational Networks

VLSI Design Course VHDL ReviewSemnan University

Data-Flow VHDL

• simple concurrent signal assignment

()

• conditional concurrent signal assignment

(when-else)

• selected concurrent signal assignment

(with-select-when)

Concurrent Statements

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Gates

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Logic Operators

 Logic operators

 Logic operators precedence

and or nand nor xor not xnor

not

and or nand nor xor xnor

Highest

Lowest

only in VHDL-93
and above

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

x 1
x 2

x n

x 1 x 2  x n + + +
x 1
x 2

x 1 x 2 +

x 1
x 2

x n

x 1
x 2

x 1 x 2 x 1 x 2 x n

(a) AND gates

(b) OR gates

x x

(c) NOT gate

Basic Gates – AND, OR, NOT

. . .

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

x
1

x
2

x
n

x
1

x
2

 x
n

+ + +
x

1

x
2

x
1

x
2

+

x
1

x
2

x
n

x
1

x
2

x
1

x
2

 x
1

x
2

 x
n

  

(a) NAND gates

(b) NOR gates

Basic Gates – NAND, NOR

…

…

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

x

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1 x 2 1 x 2 + = (a)

x 1 x 2 + x 1 x 2 = (b)

DeMorgan’s Theorem and other symbols
for NAND, NOR

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Basic Gates – XOR

(b) Graphical symbol(a) Truth table

0

0

1

1

0

1

0

1

0

1

1

0

x 1 x 2

x 1

x 2

f x 1 x 2 =

f x 1 x 2 =

(c) Sum-of-products implementation

f x 1 x 2 =

x 1

x 2

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Basic Gates – XNOR

(b) Graphical symbol(a) Truth table

0

0

1

1

0

1

0

1

1

0

0

1

x 1 x 2

x 1

x 2

f x 1 x 2 =

f x 1 x 2 =

(c) Sum-of-products implementation

f x 1 x 2 =

x 1

x 2

x 1 x 2 = .

VLSI Design Course VHDL ReviewSemnan UniversityECE 448 – FPGA and ASIC Design with VHDL

Data-flow VHDL Example: Full Adder

x

y

cin

s

cout

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Data-flow VHDL Example: Full Adder

ENTITY fulladder IS

PORT (x : IN BIT;

y : IN BIT;

cin : IN BIT;

s : OUT BIT;

cout : OUT BIT) ;

END fulladder ;

ARCHITECTURE dataflow OF fulladder IS

BEGIN

s <= x XOR y XOR cin ;

cout <= (x AND y) OR (cin AND x) OR (cin AND y) ;

END dataflow ;

VLSI Design Course VHDL ReviewSemnan University 18

Entity-Architecture Pair

Full Adder Example

VLSI Design Course VHDL ReviewSemnan University 19

4-bit Adder

VLSI Design Course VHDL ReviewSemnan University 20

4-bit Adder (cont’d)

VLSI Design Course VHDL ReviewSemnan University

Conditional concurrent signal assignment

target_signal <= value1 when condition1 else

value2 when condition2 else

. . .

valueN-1 when conditionN-1 else

valueN;

When - Else

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

2-to-1 Multiplexer

(a) Graphical symbol (b) Truth table

0

1

fs

w
0

w
1

f

s

w
0

w
1

0

1

VHDL: f <= w1 WHEN s = '1' ELSE w0 ;

or

f <= w0 WHEN s = '0' ELSE w1 ;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Cascade of two multiplexers

s1

w
3

w
1

0

1

s2

w
2

0

1 y

y <= w1 WHEN s1 = '1' ELSE

w2 WHEN s2 = '1' ELSE

w3 ;

VHDL:

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Selected concurrent signal assignment

with choice_expression select

target_signal <= expression1 when choices_1,

expression2 when choices_2,

. . .

expressionN when choices_N;

With –Select-When

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

(b) Truth table

f

s
1

w
0

w
1

00

01

s
0

w
2

w
3

10

11

w
0

w
1

0

0

1

1

1

0

1

f s
1

0

s
0

w
2

w
3

(a) Graphic symbol

4-to-1 Multiplexer

WITH s SELECT

f <= w3WHEN “11",

w2 WHEN "10",

w1 WHEN "01",

w0 WHEN OTHERS ;

s

s <= s1 & s0;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Process

VLSI Design Course VHDL ReviewSemnan University

Process

• Contain sequential statements that define
algorithms

• Executed when one of the signals in the
sensitivity list has an event

proc1: process (a,b,c)

begin

x<=a and b and c;

end process proc1;

proc2: process

begin

x<=a and b and c;

wait on a,b,c;

end process proc2;

VLSI Design Course VHDL ReviewSemnan University 28

Modeling Flip-Flops Using VHDL

Processes

 Whenever one of the signals in the sensitivity list

changes, the sequential statements are executed

in sequence one time

General form of process

VLSI Design Course VHDL ReviewSemnan University

Sequential Style Syntax

• Assignments are executed sequentially inside

processes.

VLSI Design Course VHDL ReviewSemnan University

Sequential Statements

• {Signal, Variable} assignments

• Flow control

• if <condition> then <statments>

[elsif <condition> then <statments>]

else <statements>

end if;

• for <range> loop <statments> end loop;

• while <condition> loop <statments> end loop;

• case <condition> is

when <value> => <statements>;

when <value> => <statements>;

when others => <statements>;

• Wait on <signal> until <expression> for <time>;

VLSI Design Course VHDL ReviewSemnan University 31

Wait Statements

 Wait on an alternative to a sensitivity list

 Note: a process cannot have both wait

statement(s)

and a sensitivity list

 Generic form of a process with wait

statement(s)

process

begin

sequential-statements

wait statement

sequential-statements

wait-statement

...

end process;

How wait statements work?

• Execute seq. statement until

a wait statement is encountered.

• Wait until the specified condition is satisfied.

• Then execute the next

set of sequential statements until

the next wait statement is encountered.

• ...

• When the end of the process is reached start over again

at the beginning.

VLSI Design Course VHDL ReviewSemnan University 32

Forms of Wait Statements

 Wait on

 until one of the signals in

the sensitivity list

changes

 Wait for

 waits until the time

specified by the time

expression has elapsed

 What is this:
wait for 0 ns;

 Wait until

 the boolean expression is

evaluated whenever one

of the signals in the

expression changes, and

the process continues

execution when the

expression evaluates to

TRUE

wait on sensitivity-list;

wait for time-expression;

wait until boolean-expression;

VLSI Design Course VHDL ReviewSemnan University 33

If statement: examples

if sel = ‘0’ then
result <= input_0; -- executed if sel = 0

else
result <= input_1; -- executed if sel /= 0

end if;

if sel = ‘0’ then
result <= input_0; -- executed if sel = 0

elsif sel = 1 then
result <= input_1; -- executed if sel = 1

else
result <= input_2; -- executed if sel /= 0, 1

end if;

VLSI Design Course VHDL ReviewSemnan University

2-to-1 Multiplexer

(a) Graphical symbol (b) Truth table

0

1

fs

w
0

w
1

f

s

w
0

w
1

0

1

if sel = ‘1’ then
f <= w1;

else
f <= w0;

end if;

VLSI Design Course VHDL ReviewSemnan University 35

Case statement: examples
type opcodes is (nop, add, sub);
case opcode is

when add => acc <= acc + op;
when sub => acc <= acc – op;
when nop => null;

end case;

VLSI Design Course VHDL ReviewSemnan University

(b) Truth table

f

s
1

w
0

w
1

00

01

s
0

w
2

w
3

10

11

w
0

w
1

0

0

1

1

1

0

1

f s
1

0

s
0

w
2

w
3

(a) Graphic symbol

4-to-1 Multiplexer

s <= s1 & s0;

CASE s IS

WHEN “11" => f <= w3;

WHEN "10" => f <= w2;

WHEN "01" => f <= w1;

WHEN OTHERS => f <= w0;

s

VLSI Design Course VHDL ReviewSemnan University 37

Case statement: rules

• all possible values of the selector expression must
be covered,

• each possible value must be covered by one and

only one choice,

• the choice values must be locally static, that is known

at analysis stage, and

• if the others choice is used, it must be the last

alternative and the only choice in the alternative.

VLSI Design Course VHDL ReviewSemnan University

Registers

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Clk D




0
1

0
1

Truth table

t 1 t 2 t 3 t 4

Time

Clock

D

Q

Timing diagram

Q(t+1)

Q(t)

D Q

Clock

Graphical symbol

0 –

Q(t)1 –

Edge-Trigger Register

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

ENTITY EdgeReg IS

PORT (D, Clock : IN BIT ;

Q : OUT BIT) ;

END EdgeReg ;

ARCHITECTURE behavioral OF EdgeReg IS

BEGIN

PROCESS (Clock)

BEGIN

IF Clock'EVENT AND Clock = '1' THEN

Q <= D ;

END IF ;

END PROCESS ;

END behavioral ;

Edge-Trigger Register: Another Edge definition

D Q

Clock

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

ENTITY EdgeReg IS

PORT (D, Clock : IN BIT ;

Q : OUT BIT) ;

END EdgeReg ;

ARCHITECTURE behavioral2 OF EdgeReg IS

BEGIN

PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

Q <= D ;

END IF ;

END PROCESS ;

END behavioral2;

D Q

Clock

Edge-Trigger Register: VHDL Code

- rising_edge() is only in VHDL-93 and above

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Clock D

0
1
1

–
0
1

0
1

Truth table Graphical symbol

t 1 t 2 t 3 t 4

Time

Clock

D

Q

Timing diagram

Q(t+1)

Q(t)

D latch

D Q

Clock

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

ENTITY latch IS

PORT (D, Clock : IN BIT;

Q : OUT BIT) ;

END latch ;

ARCHITECTURE behavioral OF latch IS

BEGIN

PROCESS (D, Clock)

BEGIN

IF Clock = '1' THEN

Q <= D ;

END IF ;

END PROCESS ;

END behavioral;

D latch

D Q

Clock

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

ENTITY Reg_ar IS

PORT (D, Reset, Clock : IN ; BIT

Q : OUT BIT) ;

END Reg_ar ;

ARCHITECTURE behavioral OF Reg_ar IS

BEGIN

PROCESS (Reset, Clock)

BEGIN

IF Reset = '1' THEN

Q <= '0' ;

ELSIF rising_edge(Clock) THEN

Q <= D ;

END IF ;

END PROCESS ;

END behavioral ;

Edge-Trigger Reg. with asynchronous reset

D Q

Clock

Reset

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Synthesis

VLSI Design Course VHDL ReviewSemnan University

Synthesis

 Synthesis converts a high level VHDL description code

into the gate level netlist (contains gates and their

interconnections), it is usually with the help of synthesis

tools.

 For VHDL,

 only a subset of the language is synthesizable,

 and different tools support different subsets.

 RTL style code is encouraged because it is

synthesizable.

 In RTL, it is possible to split the code into two blocks

that contain:

 either purely combinational logic

 or sequential block (e.g. process) for register, FSM,

‘’’

VLSI Design Course VHDL ReviewSemnan University 47

VLSI Design Course VHDL ReviewSemnan University

Synthesis Inpus and Outputs

 Synthesis Inputs:

 VHDL Code Design

 Constraints

 Technology Library

 Synthesis Output:

 Gates and their interconnections

z For simulation, we can use the unsynthesizable VHDL or

Verilog code in the test bench to generate the stimulus.

48

VLSI Design Course VHDL ReviewSemnan University

std_logic Type

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Example VHDL Code
 3 sections to a piece of VHDL code

 File extension for a VHDL file is .vhd

 Name of the file should be the same as the entity name
(nand_gate.vhd) [OpenCores Coding Guidelines]

LIBRARY DECLARATION

ENTITY DECLARATION

ARCHITECTURE BODY

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY nand_gate IS

PORT(

a : IN STD_LOGIC;

b : IN STD_LOGIC;

z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE model OF nand_gate IS

BEGIN

z <= a NAND b;

END model;

VLSI Design Course VHDL ReviewSemnan University 51

IEEE 1164 Standard Logic

 std_logic type: a 9-valued logic system

 ‘U’ – Uninitialized

 ‘X’ – Forcing Unknown

 ‘0’ – Forcing 0

 ‘1’ – Forcing 1

 ‘Z’ – High impedance

 ‘W’ – Weak unknown

 ‘L’ – Weak 0

 ‘H’ – Weak 1

 ‘-’ – Don’t care

If forcing and weak signal are

tied together, the forcing signal

dominates.

Useful in modeling the internal

operation of certain types of

ICs.

In this course we use a subset

of the IEEE values: X10Z

VLSI Design Course VHDL ReviewSemnan University

BIT versus STD_LOGIC

 BIT type can only have a value of '0' or '1'

 STD_LOGIC can have nine values

 '0', '1', 'Z', 'U', 'X', 'L', 'H', 'W', '-'

Useful mainly for simulation

 '0', '1', and 'Z' are synthesizable

(your codes should contain only these

three values)

VLSI Design Course VHDL ReviewSemnan University

Generic and Generate

VLSI Design Course VHDL ReviewSemnan University

• Generics allow the component to be customized

upon instantiation.

• Generics pass information from the entity to the

architecture.

• Common uses of generics

• Customize timing

• Alter range of subtypes

• Change size of arrays

ENTITY adder IS

GENERIC(n: natural :=2);

PORT(

A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

C: OUT STD_LOGIC;

SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0)

);

END adder;

Generic Statement

VLSI Design Course VHDL ReviewSemnan University

Generics

• Generics allow the component to be customized

upon instantiation.

• Generics pass information from the entity to the

architecture.

• Common uses of generics

• Customize timing

• Alter range of subtypes

• Change size of arrays

entity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(nentity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n

ENTITY adder IS

GENERIC(n: natural :=2);

PORT(

A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

C: OUT STD_LOGIC;

SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0)

);

END adder;

entity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(nentity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

A word on generics

 Generics are typically integer values

 In this class, the entity inputs and outputs should be
std_logic or std_logic_vector

 But the generics can be integer

 Generics are given a default value

 GENERIC (N : INTEGER := 16) ;

 This value can be overwritten when entity is
instantiated as a component

 Generics are very useful when instantiating an often-used
component

 Need a 32-bit register in one place, and 16-bit register
in another

 Can use the same generic code, just configure them
differently

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Use of OTHERS

OTHERS stand for any index value that has

not been previously mentioned.

Q <= “00000001” can be written as Q <= (0 => ‘1’, OTHERS => ‘0’)

Q <= “10000001” can be written as Q <= (7 => ‘1’, 0 => ‘1’, OTHERS => ‘0’)

or Q <= (7 | 0 => ‘1’, OTHERS => ‘0’)

Q <= “00011110” can be written as Q <= (4 downto 1=> ‘1’, OTHERS => ‘0’)

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Component Instantiation

in VHDL-87

U1: regn GENERIC MAP (N => 4)

PORT MAP (D => z ,

Reset => reset ,

Clock => clk,

Q => t);

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

U1: ENTITY work.regn(behavioral)

GENERIC MAP (N => 4)

PORT MAP (D => z ,

Reset => reset ,

Clock => clk,

Q => t);

Component Instantiation

in VHDL-93

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY regne IS

GENERIC (N : INTEGER := 8) ;

PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Enable, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END regne ;

ARCHITECTURE behavioral OF regne IS

BEGIN

PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

IF Enable = '1' THEN

Q <= D ;

END IF ;

END IF;

END PROCESS ;

END behavioral ;

N-bit register with enable

QD

Enable

Clock

regn

N N

VLSI Design Course VHDL ReviewSemnan University

Technology Modeling

• One use of generics is to alter the timing of a certain component.

• It is possible to indicate a generic timing delay and then specify

the exact delay at instantiation.

• The example above declares the interface to a component
named inv.

• The propagation time for high-to-low and low-to-high transitions
can be specified later.

VLSI Design Course VHDL ReviewSemnan University

Structural Statements

• The GENERIC MAP is similar to the PORT MAP in

that it maps specific values to generics declared in the

component.

VLSI Design Course VHDL ReviewSemnan University

Generate Statement

• Structural for-loops: The GENERATE statement

• Some structures in digital hardware are repetitive in nature.

(RAM, ROM, registers, adders, multipliers, …)

• VHDL provides the GENERATE statement to automatically

create regular hardware.

• Any VHDL concurrent statement may be included in a

GENERATE statement, including another GENERATE

statement.

VLSI Design Course VHDL ReviewSemnan University

Generate Statement Syntax

• All objects created are similar.

• The GENERATE parameter must be discrete and is

undefined outside the GENERATE statement.

VLSI Design Course VHDL ReviewSemnan University

Example: Array of AND-gates

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Variable & Signal

VLSI Design Course VHDL ReviewSemnan University 67

Variables

 What are they for:
Local storage in processes,
procedures, and functions

 Declaring variables
variable list_of_variable_names : type_name

[:= initial value];

• Variables must be declared within the process in
which they are used and are local to the process
– Note: exception to this is SHARED variables

VLSI Design Course VHDL ReviewSemnan University 68

Signals

 Signals must be declared outside a process

 Declaration form

signal list_of_signal_names : type_name

[:= initial value];

• Declared in an architecture can be used

anywhere within that architecture

VLSI Design Course VHDL ReviewSemnan University 69

Constants

 Declaration form
constant constant_name : type_name := constant_value;

• Constants declared at the start of an architecture

can be used anywhere within that architecture

• Constants declared within a process are local

to that process

constant delay1 : time := 5 ns;

VLSI Design Course VHDL ReviewSemnan University 70

Variables vs. Signals

 Variable assignment statement
variable_name := expression;

• Signal assignment statement

signal_name <= expression [after delay];

– expression is evaluated and the variable is
instantaneously updated
(no delay, not even delta delay)

– expression is evaluated and the signal is scheduled to
change after delay; if no delay is specified the signal is
scheduled to be updated after a delta delay

VLSI Design Course VHDL ReviewSemnan University 71

Variables vs. Signals (cont’d)

Process Using
Variables

Process Using Signals

Sum = ?

Sum = ?

VLSI Design Course VHDL ReviewSemnan University 72

Predefined VHDL Types

 Variables, signals, and constants can have any one of the

predefined VHDL types or they can have a user-defined

type

 Predefined Types

 bit – {‘0’, ‘1’}

 boolean – {TRUE, FALSE}

 integer – [-231 - 1.. 231 – 1}

 real – floating point number in range –1.0E38 to

+1.0E38

 character – legal VHDL characters including lower-

uppercase letters, digits, special characters, ...

 time – an integer with units fs, ps, ns, us, ms, sec, min,

or hr

VLSI Design Course VHDL ReviewSemnan University 73

User Defined Type

 Common user-defined type is enumerated
type state_type is (S0, S1, S2, S3, S4, S5);

signal state : state_type := S1;

• If no initialization, the default initialization is the leftmost

element in the enumeration list (S0 in this example)

• VHDL is strongly typed language =>

signals and variables of different types cannot be

mixed in the same assignment statement,

and no automatic type conversion is performed

VLSI Design Course VHDL ReviewSemnan University 74

Arrays

 Example
type SHORT_WORD is array (15 downto 0) of bit;

signal DATA_WORD : SHORT_WORD;

variable ALT_WORD : SHORT_WORD := “0101010101010101”;

constant ONE_WORD : SHORT_WORD := (others => ‘1’);

• ALT_WORD(0) – rightmost bit

• ALT_WORD(5 downto 0) – low order 6 bits

• General form

type arrayTypeName is array index_range of element_type;

signal arrayName : arrayTypeName [:=InitialValues];

VLSI Design Course VHDL ReviewSemnan University 75

Arrays (cont’d)

 Multidimensional arrays
type matrix4x3 is array (1 to 4, 1 to 3) of integer;

variable matrixA: matrix4x3 :=

((1,2,3), (4,5,6), (7,8,9), (10,11,12));

• matrixA(3, 2) = ?

• Unconstrained array type
type intvec is array (natural range<>) of integer;

• range must be specified when the array object is declared

signal intvec5 : intvec(1 to 5) := (3,2,6,8,1);

type matrix is array (natural range<>,natural range<>)

of integer;

VLSI Design Course VHDL ReviewSemnan University 76

Predefined Unconstrained Array Types

 Bit_vector, string

constant A : bit_vector(0 to 5) := “10101”;

-- (‘1’, ‘0’, ‘1’, ‘0’, ‘1’);

• Subtypes

subtype SHORT_WORD is : bit_vector(15 to 0);

• POSITIVE, NATURAL –

predefined subtypes of type integer

• include a subset of the values specified by the type

VLSI Design Course VHDL ReviewSemnan University 77

VHDL Operators

1. Binary logical operators: and or nand nor xor xnor

2. Relational: = /= < <= > >=

3. Shift: sll srl sla sra rol ror

4. Adding: + - & (concatenation)

5. Unary sign: + -

6. Multiplying: * / mod rem

7. Miscellaneous: not abs **

• Class 7 has the highest precedence (applied first),

followed by class 6, then class 5, etc

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Buffer, Decoder, Encoder

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

(b) Equivalent circuit

(c) Truth table

x f

e

(a) A tri-state buffer

0

0

1

1

0

1

0

1

Z

Z

0

1

f e x

x f

e = 0

e = 1
x f

Tri-state Buffer

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Tri-state Buffer entity

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY tri_state IS

PORT (e: IN STD_LOGIC;

x: IN STD_LOGIC;

f: OUT STD_LOGIC

);

END tri_state;

ARCHITECTURE dataflow OF tri_state IS

BEGIN

f <= x WHEN (e = ‘1’) ELSE ‘Z’;

END dataflow;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

x f

e

(b)

x f

e

(a)

x f

e

(c)

x f

e

(d)

Four types of Tri-state Buffers

f <= x WHEN (e = '1') ELSE 'Z';

f <= x WHEN (e = '0') ELSE 'Z';

f <= not x WHEN (e = '1') ELSE 'Z';

f <= not x WHEN (e = '0') ELSE 'Z';

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

2-to-4 Decoder

0

0

1

1

1

0

1

y
3

w
1

0

w
0

x x

1

1

0

1

1

En

0

0

1

0

0

y
2

0

1

0

0

0

y
1

1

0

0

0

0

y
0

0

0

0

1

0

(a) Truth table

(b) Graphical
symbol

w
1

En

y
3

w
0

y
2

y
1

y
0

w

y

Enw <= En & w ;

WITH Enw SELECT

y <= "0001" WHEN "100",

"0010" WHEN "101",

"0100" WHEN "110",

"1000" WHEN "111",

"0000" WHEN OTHERS ;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

VHDL code for a 2-to-4 Decoder entity

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY dec2to4 IS
PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;
y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END dec2to4 ;

ARCHITECTURE dataflow OF dec2to4 IS
SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ;

BEGIN
Enw <= En & w ;

WITH Enw SELECT

y <= "0001" WHEN "100",

"0010" WHEN "101",

"0100" WHEN "110",

"1000" WHEN "111",

"0000" WHEN OTHERS ;

END dataflow ;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Priority Encoder

w 0

w 3

y 0

y 1

-

0

0

1

0

1

0

w0 y1

-

y0

1 1

0

1

1

1

1

z

1
-

-

0

-

w1

0

1
-

0

-

w2

0

0

1

0

-

w3

0

0

0

0

1

z

w 1

w 2
w

y

y <= "11" WHEN w(3) = '1' ELSE

"10" WHEN w(2) = '1' ELSE

"01" WHEN w(1) = '1' ELSE

"00" ;

z <= '0' WHEN w = "0000" ELSE '1' ;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

VHDL code for a Priority Encoder entity

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY priority IS
PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
z : OUT STD_LOGIC) ;

END priority ;

ARCHITECTURE dataflow OF priority IS
BEGIN

y <= "11" WHEN w(3) = '1' ELSE

"10" WHEN w(2) = '1' ELSE

"01" WHEN w(1) = '1' ELSE

"00" ;

z <= '0' WHEN w = "0000" ELSE '1' ;

END dataflow ;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

Delay Types

VLSI Design Course VHDL ReviewSemnan University 87

Delay Types

 All VHDL signal assignment statements

prescribe an amount of time that must

transpire before the signal assumes its new

value

 This prescribed delay can be in one of three

forms:
 Transport -- prescribes propagation delay only

 Inertial -- prescribes propagation delay and minimum input pulse

width

 Delta -- the default if no delay time is explicitly specified

Input

delay

Output

VLSI Design Course VHDL ReviewSemnan University 88

Transport Delay

 Transport delay must be explicitly specified

 I.e. keyword “TRANSPORT” must be used

 Signal will assume its new value

after specified delay

Input Output

0 5 10 15 20 25 30 35

Input

Output

-- TRANSPORT delay example

Output <= TRANSPORT NOT Input AFTER 10 ns;

VLSI Design Course VHDL ReviewSemnan University 89

Inertial Delay

 Provides for specification propagation delay and input pulse

width, i.e. ‘inertia’ of output:

 Inertial delay is default and REJECT is optional:

Input

Output

0 5 10 15 20 25 30 35

Input Output

target <= [REJECT time_expression] INERTIAL waveform;

Output <= NOT Input AFTER 10 ns;

-- Propagation delay and minimum pulse width are 10ns

VLSI Design Course VHDL ReviewSemnan University 90

Inertial Delay (cont.)

 Example of gate with ‘inertia’ smaller than
propagation delay
 e.g. Inverter with propagation delay of 10ns which

suppresses pulses shorter than 5ns

 Note: the REJECT feature is new
to VHDL 1076-1993

Input

Output

0 5 10 15 20 25 30 35

Output <= REJECT 5ns INERTIAL NOT Input AFTER 10ns;

VLSI Design Course VHDL ReviewSemnan University 91

Delta Delay
 Default signal assignment propagation delay

if no delay is explicitly prescribed

 VHDL signal assignments do not take place

immediately

 Delta is an infinitesimal VHDL time unit so that all

signal assignments can result in signals assuming

their values at a future time

 E.g.

 Supports a model of concurrent VHDL

process execution

 Order in which processes are executed by

simulator does not affect simulation output

Output <= NOT Input;

-- Output assumes new value in one delta cycle

VLSI Design Course VHDL ReviewSemnan University

Example – Delta Delay

VLSI Design Course VHDL ReviewSemnan University 93

Simulation Example

VLSI Design Course VHDL ReviewSemnan University 94

Problem #1

 Using the labels,

list the order in

which the

following signal

assignments are

evaluated if in2

changes from a

'0' to a '1'.

Assume in1 has

been a '1' and

in2 has been a

'0' for a long

time, and then at

time t in2

changes from a

'0' to a '1'.

entity not_another_prob is

port (in1, in2: in bit;

a: out bit);

end not_another_prob;

architecture oh_behave of not_another_prob is

signal b, c, d, e, f: bit;

begin

L1: d <= not(in1);

L2: c<= not(in2);

L3: f <= (d and in2) ;

L4: e <= (c and in1) ;

L5: a <= not b;

L6: b <= e or f;

end oh_behave;

VLSI Design Course VHDL ReviewSemnan University 95

Problem #2

 Under what conditions do the two assignments below

result in the same behavior? Different behavior? Draw

waveforms to support your answers.

out <= reject 5 ns inertial (not a) after 20 ns;

out <= transport (not a) after 20 ns;

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

State Machines

VLSI Design Course VHDL ReviewSemnan University 97

Modeling a Sequential Machine

Mealy Machine for

8421 BCD to 8421 BCD + 3 bit serial converter

How to model this in VHDL?

VLSI Design Course VHDL ReviewSemnan University 98

Behavioral VHDL Model

Two processes:

• the first represents the

combinational network;

• the second represents

the state register

VLSI Design Course VHDL ReviewSemnan University 99

Simulation of the VHDL Model

Simulation command file:

Waveforms:

VLSI Design Course VHDL ReviewSemnan University 100

Sequential Machine Model

Using State Table

VLSI Design Course VHDL ReviewSemnan University 101

Dataflow VHDL Model

33

21313213

12

21

''

''''')(

)(

)(

XQQXZ

QQXQQXQQQtQ

QtQ

QtQ















VLSI Design Course VHDL ReviewSemnan University 102

Structural Model

Package bit_pack is a part of library BITLIB –

includes gates, flip-flops, counters

(See Appendix B for details)

VLSI Design Course VHDL ReviewSemnan University 103

Simulation of the Structural Model
Simulation command file:

Waveforms:

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

ROM

VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA

and ASIC Design with

3

16

Addr

C

8x16
ROM

Dout

ROM 8x16 example (1)

VLSI Design Course VHDL ReviewSemnan University

ROM 8x16 example (2)

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY rom IS

PORT (

Addr : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

Dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END rom;

VLSI Design Course VHDL ReviewSemnan University

ARCHITECTURE dataflow OF rom IS

SIGNAL temp: INTEGER RANGE 0 TO 7;

TYPE vector_array IS ARRAY (0 to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

(X”800A",

X"D459",

X"A870",

X"7853",

X"650D",

X"642F",

X"F742",

X"F548");

BEGIN

temp <= to_integer(unsigned(Addr));

Dout <= memory(temp);

END dataflow;

ROM 8x16 example (3)

VLSI Design Course VHDL ReviewSemnan University

ARCHITECTURE dataflow OF rom IS

TYPE vector_array IS ARRAY (0 to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

(X"800A",

X"D459",

X"A870",

X"7853",

X"650D",

X"642F",

X"F742",

X"F548");

BEGIN

Dout <= memory(to_integer(unsigned(Addr)));

END dataflow;

ROM 8x16 example (4)

