VHDL

Parviz Keshavarzi

Quick
Review

Feb, 2022

Acknowledgement

These slides used or are derived from the
following source:

= Dr. Karam Chatha’s VHDL course taught at
Arizona State University.

= Melnik

= Jason D. Bakos “VHDL and HDL Designer Primer”
university of South Carolina

= Tuft Slides

= Nitin Yogi, Digital Logic Circuits course
(yoginit@auburn.edu)

» ECE 448 George Mason University

mailto:yoginit@auburn.edu

Part 1:

VHDL In a Glance

VHDL Program Structure

a Every VHDL program consists of two main
parts:
= Entity
= Architecture

0 Entity describes Inputs and outputs of a
design

0 Architecture describes functionality of a
design

VHDL Program Structure

Entity
Architecture
Entity Entity Entity
Architecture| | Architecture Architecture
oo 0
Module 1 Module 2 Module N

entity entity-name is
[port(interface-signal-declaration);]
end [entity] [entity-name];

architecture architecture-name of entity-name is
[declarations]

begin
architecture body

end [architecture] [architecture-name];

VHDL Program Structure Example

« Concurrent signal assignment
<=

target signal <= expression;

» Data-flow VHDL Example:

ENTITY AndOrGates 15
A —
PORT (A B.D :IN BIT; __C
E - OUT BIT); B—___/ D E
END AndOrGates;

ARCHITECTURE dataflow OF AndOrGates IS
SIGNAL C: BIT;
BEGIN
C <= A AND B;
E <= C OR Dy
END dataffow ;

VHDL Description of
Combinational Networks

Concurrent Statements

C <= A and B after 5 ns;
E<=CorD after5ns;

If delay is not specified, “delta” delay is assumed

C <= A and B;

A — \ C E <= CorD;

B _J D E Order of concurrent statements is not important
E<=CorbD;
C <= A and B;

This statement executes repeatedly
CLK <= not CLK after 10 ns;

This statement causes a simulation error

CLK <= not CLK;

Data-Flow VHDL

Concurrent Statements

o simple concurrent signal assignment

(<)

» conditional concurrent signal assignment
(when-else)

o selected concurrent signal assigniment
(with-select-when)

Gartes

Logic Operators

Q Logic operators

I |
and or nand nor xor not : xnor :
] |
0 Logic operators precedence o T\“
only in VHDL-93
, and above
Highest
not
and or nand nor Xor Xnor
Lowest

Basic Gates —AND, OR, NOT

X.Z —_
. X2/
X_Z .
XZ_D_ X1~X2 . D_ X_Z'XZ ...-Xn
X —

X1+X2+.. .')"X,7

(c) NOT gate

Basic Gates — NAND, NOR

X1
« X1 %2 * X1 %2 o Xy
2 — [}

Xl_
X0 —
X1
o
X —_—

(b) NOR gates

DeMorgan’s Theorem and other symbols
for NAND, NOR

- e X
A o LA o 3D

(a) X1X2 - X.Z +X2

X; & DC# L X; —0
ij_'L>o_ <:> {>C I__D— <:> Xz—O}

X

(b) Xy +X2 = X1Xo

Basic Gates — XOR

X; X5 =X, DX,

0 0 0

0 1 1 ¥

1 0 1 JjD f=x,@x
= X1 & X2

1 1 0 X2

(a) Truth table (b) Graphical symbol
X 1 \ ¢ DO-

}i}
~aDs .

(c) Sum-of-products implementation

Basic Gates — XNOR

X; Xo | F=Xx,Dx
0 0 1
0 1 0 X\
1 0 0 ¥ f=Xx@x, = x;0 X,
11 1 27
(a) Truth table (b) Graphical symbol

Ba
> D-

(c) Sum-of-products implementation

Data-flow VHDL Example: Full Adder

, ED s
)
D@i cout
D_

Data-flow VHDL Example: Full Adder

ENTITY fulladder IS
PORT (x S IN BIT;
y S IN BIT;
cin IN BIT;
S SouT BIT;
cout :OUT BIT),
END fulladder ;

ARCHITECTURE dataflow OF fulladder 1S
BEGIN

s <= xXXORyXORcin,

cout <= (xAND y) OR (cin AND x) OR (cin AND y) ;
END dataflow ;

Entity-Architecture Pair

Full Adder Example

X i — Cout
y — FULL

ADDER
Cin—P ——» Sum

entity FullAdder is
port (X, Y, Cin: in bit; -- Inputs
Cout, Sum: out bit); -- Outputs
end FullAdder;

architecture Equations of FullAdder is
begin -- Concurrent Assignments

Sum <= X xor Y xor Cin after 10 ns;

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
end Equations;

4-bit Adder

S(3) S(2) S(1) S(0)
t t t t
Full C(3) | Full C(2) | Full C(1) | Full :
Co < ALt‘.Iider B Aléder — Alt.fider - Alsider +— Ci
f 1 t 1 1 T 1
A(3) B(3) A(2) B(2) A(1) B(1) A(0) B(0)

entity Adder4 is

port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
S: out bit_vector(3 downto 0); Co: out bit); -- Qutputs
end Adder4;

4-bit Adder (cont’d)

entity Adder4 is

port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
S: out bit_vector(3 downto 0); Co: out bit); -- Qutputs
end Adder4;

architecture Structure of Adder4 is
component FullAdder
port (X, Y, Cin: in bit; -- Inputs
Cout, Sum: out bit); -- Qutputs
end component;
signal C: bit vector(3 downto 1);
begin --instantiate four copies of the FullAdder
FAO: FullAdder port map (A(0), B(0), Ci, C(1), S(0));
FA1l: FullAdder port map (A(1), B(1), C(1), C(2), S(1));
FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));
FA3: FullAdder port map (A(3), B(3), C(3), Co, S(3));
end Structure;

Conditional concurrent signal assignment

When - Else

target signal <= valuel when conditionl else
value? when condition’ else

valueN-1 when conditionN-1 else
valuelN,

2-to-1 Multiplexer

00— 0 w
w
/ !
(a) Graphical symbol (b) Truth table

VHDL: F<=wl WHENSs="1"ELSE w0
or
f<=wO0WHEN s ="0"ELSE wl

Cascade of two multiplexers

S TN
(.

VHDL:

y<=wl WHENSsI= "1"ELSE
w2 WHEN s2 = "1'ELSE
W3 ;

Selected concurrent signal assignment

With —Select-When

with choice expression select
target signal <= expressionl when choices 1,
expressionZ when choices 2,

expressionN when choices N;

4-to-1 Multiplexer

(a) Graphic symbol (b) Truth table
50
5 { S f
7 j\ 1 0
\ 4 W
w 0—1 00" Y 0
Yi—or | o 1 W
WZ_, 10 1 0 w P,
S<=s1& SO;
WITH s SELECT

f<= W3WHEN “11°,
w2 WHEN *'10",
wl WHEN *01°,
w0 WHEN OTHERS ,

Process

Process

- Contain sequential statements that define
algorithms

- Executed when one of the signals in the
sensitivity list has an event

procl: process (a,b,¢) procz: process
begin begin
x<=a and b and c; x<=aand b and ¢;
end process procl; wait on a,b,¢;
end process proc2;

Modeling Flip-Flops Using VHDL
Processes

General form of process

process(sensitivity-list)
begin
sequential-statements
end process;

a Whenever one of the signals in the sensitivity list
changes, the sequential statements are executed
In sequence one time

Sequential Style Syntax

[process_label :] PROCESS
[(sensitivity_list)]
NO
process_declarations « SIGNAL
DECLARATIONS!

BEGIN

process_statements

END PROCESS [process_label] ;

- Assignments are executed sequentially inside
processes.

Sequential Statements

- {Signal, Variable} assignments

- Flow control

 if <condition> then <statments>

[elsif <condition> then <statments>]

else <statements>

end if;
» for <range> loop <statments> end loop;
« while <condition> loop <statments> end loop;
» case <condition> is

when <value> => <statements>;

when <value> => <statements>;
when others => <statements>;

- Wait on <signal> until <expression> for <time>;

Wait Statements

a Wait on an alternative to a sensitivity list

= Note: a process cannot have both wait
statement(s)
and a sensitivity list

0 Generic form of a process with walit

statement(s) |
How wait statements work?
« Execute seq. statement until
process a wait statement is encountered.
begin » Wait until the specified condition is satisfied.
fial-stat N » Then execute the next
sequential.=statements set of sequential statements until
wait statement the next wait statement is encountered.

sequential-statements -
* When the end of the process is reached start over again

walt-statement =t
at the beginning.

end process;

Forms of Wait Statements

wait on sensitivity-list;
wait for time-expression;

wait until boolean-expression;

O Wait on a Wait until
= until one of the signals in = the boolean expression is
the sensitivity list evaluated whenever one
changes of the signals in the
: expression changes, and
Q Wait for _ _ the process continues
= walts until the time execution when the
specified by the time expression evaluates to
expression has elapsed TRUE
= What is this:

walt for 0 ns;

If statement: examples

if sel = '0’ then

result <= input_0; -- executed if sel = 0
else

result <= input_l; -- executed if sel /=0
end if;

if sel ='0" then
result <= input_0; -- executed if sel = 0
elsif sel = 1 then
result <= input_1; -- executed if sel = 1
else
result <= input_2; -- executed if sel /=0, 1
end if;
- VLSIDesign Course ~ SemanUnbesty — VHDLReview vr

2-to-1 Multiplexer

0—| 0 W
L 0 "o
w

(a) Graphical symbol (b) Truth table

if sel ='1" then
f <=wl;
else
f <= wo0;
end if;

Case statement: examples

type opcodes is (nop, add, sub);

case opcode Is
when add => acc <= acc + op;
when sub => acc <= acc — op;
when nop => null;

end case;

4-to-1 Multiplexer

(a) Graphic symbol (b) Truth table
50
5 { S f
7 j\ 1 0
\ 4 W
w 0—1 00" Y 0
Yi—or | o 1 W
WZ_, 10 1 0 w P,
S<=s1& SO;
CASE s IS

WHEN “11'" =>f <= w3,
WHEN 10" => F<=w2;
WHEN "01" =>f<=wl,
WHEN OTHERS => f <= w0,

Case statement: rules

e all possible values of the selector expression must
be covered,

e each possible value must be covered by one and
only one choice,

e the choice values must be locally static, that is known
at analysis stage, and

o if the others choice is used, it must be the last
alternative and the only choice in the alternative.

Registers

Eadge-Trigger Register

Graphical symbol Truth table
Clk D | Q(t+1)
—1 D Q —
7 0| o0
—P> Clock 7\ 1 1
0 — | QW
I =101
Timing diagram
{ > L3 ly
| | | |
Clock
D

Eadge-Trigger Register. Another Edge definition

ENTITY EdgeReg 1S
PORT (D, Clock :IN BIT, N
Q .ouT BIT),;

END EdgeReg ,

— > Clock

ARCHITECTURE behavioral OF EdgeReg 1S
BEGIN
PROCESS (Clock)
BEGIN
IF Clock’'EVENT AND Clock = "1' THEN
Q <= D ;'
END IF,
END PROCESS ,

END behavioral ;

Edge-Trigger Register: VHDL Code

ENTITY EdgeReg 1S
PORT (D, Clock :IN BIT, —l 5 ot—
Q .ouUT BIT),
END EageReg , N clock
ARCHITECTURE behavioral? OF EdgeReg 1S
BEGIN
PROCESS (Clock)
BEGIN
IF rising _edge(Clock) THEN
Q <: D 1'
END IF : - rising_eage() Iis only in VHDL-93 and above
END PROCESS ,;

END behavioral?;

D latch

Graphical symbol

—

—

—

Truth table
Clock D | Q(t+1)
0o - | QW
17 0 0
yi 1 yi

t;
Clock _' _____________________
D
Q@

ettt T

D latch

ENTITY latch IS
PORT(D, Clock 1IN BIT; 1L e
0 oUT BIT);
END latch ; —*|Clock

ARCHITECTURE behavioral OF latch IS
BEGIN
PROCESS (D, Clock)
BEGIN
IF Clock = '1' THEN
Q <: D I'
END IF ;
END PROCESS ;

END behavioral,

Edge-Trigger Reqg. with asynchronous reset

ENTITY Req ar IS
PORT (D, Reset, Clock . IN , BIT

END Reg ar,
—P> Clock
ARCHITECTURE behavioral OF Req_ar IS Reset
BEGIN
PROCESS (Reset, Clock)
BEGIN
IF Reset = '1' THEN
O<="0""
ELSIF rising edge(Clock) THEN
O <: D "
END IF;
END PROCESS ,;

END behavioral ;

Synthesis

Synthesis

a Synthesis converts a high level VHDL description code
into the gate level netlist (contains gates and their
iInterconnections), it is usually with the help of synthesis
tools.

a For VHDL,
= only a subset of the language is synthesizable,
= and different tools support different subsets.

RTL style code is encouraged because it is
synthesizable.

In RTL, it is possible to split the code into two blocks
that contain:

either purely combinational logic
or sequential block (e.g. process) for register, FSM,

639

(HTL-)WHDL code

é

constrants

IE
macrocell ﬂ
lbrary — = =
wld
-
technology / =
library o

G

(Gate-) WVHDL code

Synthesis Inpus and Qutputs

a Synthesis Inputs:
* VHDL Code Design
= Constraints
= Technology Library

Q Synthesis Output:
= Gates and their interconnections

For simulation, we can use the unsynthesizable VHDL or
Verilog code in the test bench to generate the stimulus.

std logic Type

Example VHDL Code

Q 3 sections to a piece of VHDL code
Q File extension for a VHDL file is .vhd

0 Name of the file should be the same as the entity name
(nand_gate.vhd) [OpenCores Coding Guidelines]

LIBRARY ieee/,
USE ieee.std logic 1164.all,

ENTITY nand gate IS
PORT (

a : IN STD LOGIC;
b : IN STD LOGIC,
z : OUT STD LOGIC),

END nand gate;

ARCHITECTURE model OF nand gate IS
BEGIN

z <= a NAND b,
END model,

_—

\

\\

— LIBRARY DECLARATION

> ENTITY DECLARATION

> ARCHITECTURE BODY

IEEE 1164 Standard Logic

Qa std _logic type: a 9-valued logic system
= ‘U’ — Uninitialized
= ‘X' — Forcing Unknown
* ‘0’ = Forcing O
» ‘1’ - Forcing 1
» ‘2’ — High impedance
= ‘W — Weak unknown

If forcing and weak signal are
tied together, the forcing signal
dominates.

Useful in modeling the internal
operation of certain types of

» ‘H' —Weak 1 _
- , In this course we use a subset
= " — Don’t care

of the IEEE values: X10Z

BIT versus STD LOGIC

Q BIT type can only have a value of '0' or 1"

aQ STD_LOGIC can have nine values
= 0, "1, 'Z, U X L HY, W
Useful mainly for simulation
= '0", '1', and 'Z' are synthesizable
(your codes should contain only these
three values)

Generic and Generate

Generic Statement

- Generics allow the component to be customized
upon instantiation.

- Generics pass information from the entity to the
architecture.

- Common uses of generics
« Customize timing
» Alter range of subtypes
« Change size of arrays

ENTITY adder IS

GENERIC (n: natural :=2),;

PORT (
A: IN STD_LOGIC_VECTOR(IJ—_Z DOWNTO 0) ;
B: IN STD_LOGIC_VECTOR(IJ—_Z DOWNTO 0) ;
C: OUT STD LOGIC,
SUM: OUT STD LOGIC VECTOR (n—1 DOWNTO 0)

Vg
END adder,;

Cirilily ML 1o YCIHICIHIC(I. Iialdidil .—4& e /M T otU_1IVYIC_VOULUIN(TT= T UUWINRVU U/, 2. ITT olU_IVYICL_VOULUIN T 1T UUWINIU U/, oall y. UUl olU_IVYICU, oUlTl. UUL otU_IUYIU_ V!
7 - . g — .

Generics

- Generics allow the component to be customized
upon instantiation.

- Generics pass information from the entity to the
architecture.

- Common uses of generics
« Customize timing
» Alter range of subtypes
« Change size of arrays

ENTITY adder IS

GENERIC (n: natural :=2),;

PORT (
A: IN STD_LOGIC_VECTOR(IJ—_Z DOWNTO 0) ;
B: IN STD_LOGIC_VECTOR(IJ—_Z DOWNTO 0) ;
C: OUT STD LOGIC,
SUM: OUT STD LOGIC VECTOR (n—1 DOWNTO 0)

Vg
END adder,;

A word on generics

QO Generics are typically integer values

* |n this class, the entity inputs and outputs should be
std logic or std_logic_vector

= But the generics can be integer
O Generics are given a default value
= GENERIC (N : INTEGER :=16);

= This value can be overwritten when entity Is
Instantiated as a component

a Generics are very useful when instantiating an often-used
component

* Need a 32-bit register in one place, and 16-bit reqgister
In another

» Can use the same generic code, just configure them
differently

Use of OTHERS

OTHERS stand for any index value that has
not been previously mentioned.

Q <= “00000001” can be written as Q <= (0 => 1", OTHERS => 0’)

Q <= “10000001” can be writtenas Q<=(7=> 1,0 => 1’, OTHERS => 0’)
or Q<=(7/0=> 1", OTHERS => 0’)

Q <= “00011110” can be written as Q <= (4 downto 1=> ‘1°, OTHERS => 0’)

Ul: regn

Component Instantiation
in VHDL-87

GENERIC MAP (N => 4)
PORT MAP (D =>z,
Reset =>reset ,
Clock => clk,

Q=>t),

Component Instantiation
in VHDL-93

Ul: ENTITY work.regn(behavioral)
GENERIC MAP (N => 4)
PORT MAP (D =>z,
Reset =>reset ,
Clock => clk,

Q=>t);

N-bit register with enable

LIBRARY Jeee
USE ieee.std logic 1164.all ;

ENTITY regne IS
GENERIC (N : INTEGER :=8);
PORT(D SIN STD LOGIC VECTOR(N-1 DOWNTO0),
Enable, Clock . IN STD LOGIC,
0 ;OUT STD LOGIC VECTOR(N-1 DOWNTOU()),
END regne ;
ARCHITECTURE behavioral OF regne 1S l
BEGIN
PROCESS (Clock) N Enable | N

BEGIN 7;, D 9, +,

IF rising_edge(Clock) THEN
IF Enable = '1' THEN
Q<=D;

END IF —> Clock
END IF; regn
END PROCESS ;

END behavioral ;

Technology Modeling

One use of generics is to alter the timing of a certain component.

It is possible to indicate a generic timing delay and then specify
the exact delay at instantiation.

COMPONENT inv IS
PORT (inl : IN BIT;
outl : OUT BIT);
GENERIC (tplh, tphl : TIME);
END COMPONENT;

« The example above declares the interface to a component
named inv.

« The propagation time for high-to-low and low-to-high transitions
can be specified later.

Structural Statements

- The GENERIC MAP is similar to the PORT MAP in
that it maps specific values to generics declared in the
component.

PACKAGE my_stuff IS
COMPONENT and_gate
GENERIC (tplh, tphl : time);
PORT (inl, inZ : IN BIT; outl : QOUT BIT);
END COMPONENT;
END my_stuff;

USE Work.my_stuff.ALL;
ARCHITECTURE test OF test_entity
SIGNAL S1, Sz, 53 : BIT;
BEGIN
Gatel : my_ stuff.and gate
GENERIC MAP (2 ns, 3 ns)
PORT MAP (S1, S2, S3);
END test;

Generate Statement

Structural for-loops: The GENERATE statement

« Some structures in digital hardware are repetitive in nature.
(RAM, ROM, registers, adders, multipliers, ...)

 VHDL provides the GENERATE statement to automatically
create regular hardware.

« Any VHDL concurrent statement may be included in a
GENERATE statement, including another GENERATE
statement.

Generate Statement Syntax

All objects created are similar.

The GENERATE parameter must be discrete and is
undefined outside the GENERATE statement.

name : FOR N IN 1 TO 8 GENERATE
concurrent—-statements
END GENERATE name;

Example: Array of AND-gates

USE work.my_gates.all;
ARCHITECTURE structural OF and bit vector IS
BEGIN
Gl : FOR 1 IN N-1 DOWNTO 0 GENERATE
and_array : and_gate
GENERIC MAP (2 ns, 3 ns)
PORT MAP (il=>a(i),i2=>b(i),g=>q(i));
END GENERATE G1;
END structural;

a(N-1:0)
b(N-1:0)

VUVUVUY

q(N-1:0)

Variable & Signal

Variables

a What are they for:
_ocal storage Iin processes,
procedures, and functions

0 Declaring variables

variable list of variable names : type name
[:= initial value];

« Variables must be declared within the process in
which they are used and are local to the process

— Note: exception to this is SHARED variables

Signals

Q Signals must be declared outside a process
Q Declaration form

signal list of signal names : type name
[:= 1nitial value];

 Declared in an architecture can be used
anywhere within that architecture

Constants

a Declaration form

constant constant name : type name := constant value;

constant delayl : time := 5 ns;

 Constants declared at the start of an architecture
can be used anywhere within that architecture

« Constants declared within a process are local
to that process

Variables vs. Signals

9 Variable assignment statement
varila e 10n,

~rname =~ express

— expression is evaluated and the variable is
Instantaneously updated

(no delay, not even delta delay)

 Signal assignment statement

signal name <= expression [after delay];

— expression is evaluated and the signal is scheduled to

change after delay; if no delay is specified the signal is
scheduled to be updated after a delta delay

Variables vs. Signals (cont'd)

Process Using
Variables

entity dummy is
end dummy;

architecture var of dummy is
signal trigger, sum: integer:=0;
begin
process
variable varl: integer:=1;
variable var2: integer:=2;
variable var3: integer:=3;
begin
wait on trigger;
varl := var2 + var3;
var2 .= varl;
var3 := var2;

sum <= varl 4 var2 + var3;

end process;
end var;

Sum = ?

Process Using Signals

entity dummy is
end dummy;

architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sigl: integer:=1;
signal sig2: integer:=2;
signal sig3: integer:=3;
begin
process
begin
wait on trigger;
sigl <= sig2 + sig3;
sig2 <= sigl;
sig3 <= sig2;
sum <= sigl + sig2 + sig3;
end process;
end sig;

Sum = ?

Predefined VHDL Types

O Variables, signals, and constants can have any one of the
predefined VHDL types or they can have a user-defined

type
0 Predefined Types
= bit-{'0, ‘'1}

= pboolean — {TRUE, FALSE}

= integer —[-231-1.. 231 -1}

» real — floating point number in range —1.0E38 to
+1.0E38

» character — legal VHDL characters including lower-
uppercase letters, digits, special characters, ...

* time — an integer with units fs, ps, ns, us, ms, sec, min,
or hr

User Defined Type

0 Common user-defined type is enumerated
type state type is (SO, S1, S2, S3, S4, S5);

signal state : state type := S1;

 If no initialization, the default initialization is the leftmost
element in the enumeration list (SO in this example)

« VHDL is strongly typed language =>
signals and variables of different types cannot be
mixed Iin the same assignment statement,
and no automatic type conversion is performed

Arrays

QO Example
type SHORT WORD is array (15 downto 0) of bit;

signal DATA WORD : SHORT WORD;
variable ALT WORD : SHORT WORD “0101010101010101";
constant ONE WORD : SHORT WORD := (others => '‘17);

« ALT_WORD(0) — rightmost bit

« ALT WORD(5 downto 0) — low order 6 bits

« General form

type arrayTypeName is array index range of element type;

signal arrayName : arrayTypeName [:=InitialValues];

Arrays (cont’d)

Q Multidimensional arrays
type matrix4x3 is array (1 to 4, 1 to 3) of integer;

variable matrixA: matrix4dx3 :=
((11213)1 (41516)1 (71819)1 (10,11,12));

* matrixA(3, 2) = ?

« Unconstrained array type

type intvec is array (natural range<>) of integer;

type matrix 1is array (natural range<>,natural range<>)
of integer;

* range must be specified when the array object is declared

signal intvec5 : intvec(l to 5) := (3,2,6,8,1);

Predefined Unconstrained Array Types

Q Bit vector, string

type bit vector is array (natural range <=) of bit;
type string is array (positive range <>) of character;

constant stringl: string(1 to 29) := "This string is 29 characters.”
constant A : bit vector(0 to 5) := “10101";

_ (\11’ \Or’ \11’ \Or, \1/);

« Subtypes
* Include a subset of the values specified by the type

subtype SHORT WORD is : bit vector (15 to 0);

 POSITIVE, NATURAL —
predefined subtypes of type integer

VHDL Operators

Binary logical operators: and or nand nor xor xnor
Relational: = /=< <=>>=

Shift: sll srl sla srarol ror

Adding: + - & (concatenation)

Unary sign: + -

Multiplying: * / mod rem

Miscellaneous: not abs **

N o g A~ W D oE

« Class 7 has the highest precedence (applied first),
followed by class 6, then class 5, etc

Buffer, Decoder, Encoder

[r1-state Buffer

(a) A tri-state buffer Y ‘ > . f

(b) Equivalent circuit

N R QQ O
N QK QO X
N~ O NN |

(c) Truth table

Tri-state Buffer entity

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tri_state IS
PORT (e: INSTD LOGIC;
Xx: IN STD_LOGIC;
f: OUT STD_LOGIC

);
END tri_state;
ARCHITECTURE dataflow OF tri_state IS
BEGIN
f <= x WHEN (e =‘1’) ELSE ‘Z’;
END dataflow;

Four types of Tri-state Buffers

e e
x—& f x—&@—f

f<=x WHEN (e ="1')ELSE Z7 [f<=notx WHEN (e="1')ELSE 'Z%

e e
X4§ f X4§O—f

f<=xWHEN (e ="0') ELSE 'Z) [<=notx WHEN (e ="0')ELSE 'Z%

2-to-4 Decoder

(b) Graphical
symbol
(a) Truth table _Jw V-]
W{ 1 3
EnWi %o Y3 Y2 Y1 % — y
J/_Z_,
1 0 O 0 0 0 1 N yg_’_,
1 0 1 0O 0 1 0
110 0100 Enw<=En& w:
17 1 1 1 0 0 0O WITH Enw SELECT
y <="0001" WHEN ""100",
0 x x| 0000 "0010" WHEN ""101""

"0100" WHEN "110"
1000 WHEN "'111",
"0000" WHEN OTHERS ;

VHDL code for a 2-to-4 Decoder entity

LIBRARY reee
USE jeee.std logic 1164.all ;

ENTITY decZto4 IS
PORT(w :IN STD LOGIC VECTOR(1DOWNTOQO),
En . IN STD LOGIC;
y souUT STD LOGIC VECTOR(3DOWNTOO)),
END dec2to4 ;

ARCHITECTURE dataflow OF decZto4 IS
SIGNAL Enw : STD LOGIC VECTOR(Z2 DOWNTOQ0),

BEGIN
Enw<=En& w;
WITH Enw SELECT
y <="0001" WHEN "'100",
0010 WHEN "'101"
0100 WHEN "'110""
1000 WHEN "111""
0000 WHEN OTHERS ;
END aataflow ;

Priority Encoder

I
0 y0_>
W — 1
— | w, y<="11"WHEN w(3) = '1' ELSE
—|{w, zZ — 10" WHEN w(2) = '1" ELSE
— 01" WHEN w(l) = '1" ELSE
110011,.
Ws Wo Wy Wo | V1 Vo Z 7 <="0"WHEN w = ""0000" ELSE '1" -
o 0 0 0 - - 0
0 0 0 1 0 0 1
0o 0 1 - 0 1 1
o 1 - - 1 0 1
7 - - - 1 1 1

VHDL code for a Priority Encoder entity

LIBRARY ieee,
USE Jjeee.std logic 1164.all

ENTITY priority IS
PORT (w . IN STD LOGIC VECTOR(3DOWNTOQ0),
y ouUT STD LOGIC VECTOR(IDOWNTOO),
z 0OUT STD LOGIC),
END priority ;

ARCHITECTURE dataflow OF priority 1S
BEGIN
y<= "11"WHEN w(3) = "1"ELSE
10" WHEN w(2) = '1' ELSE
"01" WHEN w(l) = '1' ELSE
00" -
z<="0"WHEN w ="0000" ELSE ‘1",
END dataflow ;

Delay Types

Delay Types

a All VHDL signal assignment statements
prescribe an amount of time that must

transpire before the signal assumes its new
value

Q This prescribed delay can be in one of three
forms:

» Transport -- prescribes propagation delay only

= Inertial -- prescribes propagation delay and minimum input pulse
width

» Delta -- the default if no delay time is explicitly specified

Input Output

delay

Transport Delay

Q Transport delay must be explicitly specified
» |.e. keyword “TRANSPORT" must be used

a Signal will assume its new value
after specified delay

——- TRANSPORT delay example
Output <= TRANSPORT NOT Input AFTER 10 ns;

/
Input [>O Output -~
\

Input
\

\\»

Output

0 5 10 15 20 25 30 35

Inertial Delay

0 Provides for specification propagation delay and input pulse
width, i.e. ‘inertia’ of output:

target <= [REJECT time expression] INERTIAL waveform;

0O Inertial delay is default and REJECT is optional:

Output <= NOT Input AFTER 10 ns;
-- Propagation delay and minimum pulse width are 10ns

|

J Input .
Input >O Output S
‘ Output !

N\
~

N —

0 5 10 15 20 25 30 35

Inertial Delay (cont.)

a Example of gate with ‘inertia’ smaller than
propagation delay

» e.g. Inverter with propagation delay of 10ns which
suppresses pulses shorter than 5ns
|Output <= REJECT 5ns INERTIAL NOT Input AFTER 10ns;

Input_!_| I‘\|“~,

A :
) : |
: :

H
| :_:

Output AERY ek

——
H "
.

0O 5 10 15 20 25 30 35
a Note: the REJECT feature is new
to VHDL 1076-1993

Delta Delay

0 Default signal assignment propagation delay
If no delay is explicitly prescribed

* VHDL signal assignments do not take place
Immediately

» Delta is an infinitesimal VHDL time unit so that all
signal assignments can result in signals assuming
their values at a future time

= E.Q.

Output <= NOT Input;
-— Output assumes new value in one delta cycle

Q Supports a model of concurrent VHDL
process execution

* Order in which processes are executed by

simulator does not affect simulation output
LS! Design C o VHDL Revi

Example - Delta Delay

IN: 1->0

e >
e

Using delta delay scheduling
Time Delta Ewvent
0 ns 1 IN: 1->=0
eval inverter
2 A: 0-—>1
eval NAND, AND
3 B: 1->0
C: 0->1
eval AND
4 C: 1->0
T Lo

Simulation Example

entity simulation_example is
end simulation_example;

architecture testl of simulation_example is
signal A,B: bit;

begin
P1l: process(B)
begin
A<="1"

A <= transport '0' after 5 ns;
end process P1;

P2: process(A)
begin
if A="1 then B <= not B after 10 ns; end if;
end process P2;
end testl;

CQueued Current
values value
After elaboration: O e
time =0) —F
After initialization: | 'O @5 | "1"@A | ') |—mle A
time=0 0" e
Simulation step: 0@5 |1 frt A
- ") [—
time=5
"T@ 10 | ') [5
time = 10 0@ 1511 @ 104A] 10 [r— A
"' —
. O @10 | 1 g A
time =10+ A -
@20 |1 > B
time = 15 O A
0 @20 | 1 p—w=B

Problem #1

Q Using the labels,
list the order In
which the
following signal
assignments are
evaluated if in2
changes from a
‘O'toa'l’.
Assume inl has
been a'l' and
IN2 has been a
'0' for a long
time, and then at
time £in2
changes from a
‘O'toa'l’.

entity not another prob is

port (inl, in2: 1n bit;
a: out bit);

end not another prob;

architecture oh behave of not another prob is

signal b, ¢, d, e, f: bit;
begin

Ll: d <= not(inl);

L2: c¢<= not(in2);

L3: f <= (d and in2) ;

L4: e <= (c and inl) ;

L5: a <= not b;

Lo: Db <= e or f;

end oh behave;

Problem #2

0 Under what conditions do the two assignments below
result in the same behavior? Different behavior? Draw
waveforms to support your answers.

out <= reject 5 ns inertial (not a) after 20 ns;

out <= transport (not a) after 20 ns;

State Machines

Modeling a Sequential Machine

Mealy Machine for

8421 BCD to 8421 BCD + 3 hit serial converter
. NS Z

PS [X=0 X=1|X

S0 S1 S2
0/1 S1 S3 S4
S2 S4 S4
S3 S5 S5
S4 S5 S6
S5 SO S0
S6 S0 -

=
>

| [N e . Y o N e | 1]
—

N e P Y o Y I

How to model this in VHDL?

Behavioral VHDL Model

entity SM1_2 is
port(X, CLK: in bit; Z: out bit);
end SM1_2;

architecture Table of SM1_2 is
signal State, Nextstate: integer := 0;
begin
process(State, X) --Combinational Network
begin
case State is
when 0 ==
if X="0" then Z<="1"; Nextstate<=1,; end if;
if X="1"then Z<="0"; Nextstate<=2; end if;

when 1 == S =
if X="0" then Z<="1"; Nextstate==3; end if;
if X="1" then Z<='0"; Nextstate<=4; end if: PS | X-0 X-1]|X=0 X-1
when 2 ==
if X="0' then Z<="0"; Nextstate<=4; end if; E? g{ éi % 3
if X="1'then Z<="1"; Nextstate<=4; end if; 82 54 S4 0 1
when 3 == S3 S5 S5] 1
if X="0" then Z<="0"; Nextstate==5; end if; g‘; E{S] 23 [1} (1}
if X="1"then Z<="1"; Nextstate==5; end if; S5 S0 N 1 N
when 4 ==
if X="0" then Z<="1"; Nextstate=<=5; end if;
if X="1' then Z<="0'; Nextstate<=6; end if; Two processes:
when 5 ==
if X="0"then Z<="0"; Mextstate<=0; end if; :
if X—'1' then Z<~'1"; Nextstate<~0; end i * the first represents the
when & == . ; .
if X="0"then Z<="1"; Nextstate<=0; end if; Comb|nat|0na| network1
when others == null; -- should not occur
end case; * the second represents
end process; th t t r | t r
process(CLK) -- State Register € State eg Ste
begin
if CLK="1" then -- rising edge of clock
State == Nextstate;
end if;
end process;
end Table;

Simulation of the VHDL Model

Simulation command file:

wave CLK X State NextState Z
force CLK 0 0, 1 100 -repeat 200
force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350

run 1600
Waveforms:
felkt. I L I 1 L L
/X1 0 0 1 0] Lo 0 1]
/stateto__XI X3 5 Al) (R ¢ (0
/nextstate t1__ X3) & 0 X: | (R € Xo
/zf]| 1 T o1 0 L0 L] 1

0 500 1000 1500

Sequential Machine Model
Using State Table

entity SM1 2 is
port (X, CLK: in bit;
Z: out bit);
end SM1 2;

architecture Table of SM1 2 is
type StateTable is array (integer range <>, bit range <>) of integer;
type OutTable is array (integer range <>, bit range <>) of bit;
signal State, NextState: integer := 0;
constant ST: StateTable (Oto 6, '0"to '1") :=
((1,2), (3,4), (4,4), (5,5), (5,6), (0,0), (0,0));
constant OT: OutTable (Oto 6, '0"to '1") :=
(('1','0), ("'1,°0%), ('0°,'17), ("0°,'1), (1,07, (0,717, ("17,°0%));

begin -- concurrent statements
NextState <= ST(State,X); -- read next state from state table
Z <= QOT(State, X); -- read output from output table
process(CLK) NS YA
begin - —
= = X=0 X=1
if CLK = '1' then - rising edge of CLK PS |X=0 X=1
State <= NextState; g? g; gi } g
end if; . S2| sS4 s4 0 1
end process; S3 S5 S5 0 1
end Table; S4 S5 S6 1 0
S5 S0 S0 0 1
S6 S0 - 1 -

Dataflow VHDL Model

-- The following is a description of the sequential machine of
-- Figure 1-17 in terms of its next state equations.

-- The following state assignment was used:

-- S0-->0; S1--=4, S2-->5; 53-->7, 54-->6; 55-->3; 56-->2

entity SM1 2 is
port(X,CLK: in bit;
Z: out bit);
end SM1 2;

architecture Equationsl 4 of SM1 2 is
signal Q1,Q2,Q3: bit;
begin
process(CLK)
begin
if CLK="1" then -- rising edge of clock
Ql<=not Q2 after 10 ns;
Q2<=Q1 after 10 ns;
Q3<=(Q1 and Q2 and Q3) or (not X and Q1 and not Q3) or
(X and not Q1 and not Q2) after 10 ns;
end if;
end process;
Z<=(not X and not Q3) or (X and Q3) after 20 ns;
end Equationsl_4;

Structural Model

library BITLIB; az—|

_ ai D Q—a1
use BITLIB.bit pack.all; a2 &1 LAl FF1
Q3’| — Q=1

entity SM1 2 is at a1

port(X,CLK: in bit; a3 g2 b A2

Z: out bit); E X

end SM1 2; X e E:DS
architecture Structure of SM1 2 is az™ LK

signal A1,A2,A3,A5,A6,D3: bit:='0";

signal Q1,Q2,Q3: bit:='0";

signal Q1N,Q2N,Q3N, XN: bit:='1"; Package bit_pack is a part of library BITLIB —
begin) .

[1: Inverter port map (X,XN): includes gates, flip-flops, counters

G1: Nand3 port map (Q1,Q2,Q3,A1); (See Appendix B for details)

G2: Nand3 port map (Q1,Q3N,XN,A2);
G3: Nand3 port map (X,Q1N,Q2N,A3);
G4: Nand3 port map (Al,A2,A3,D3);
FF1: DFF port map (Q2N,CLK,Q1,Q1N);
FF2: DFF port map (Q1,CLK,Q2,Q2N);
FF3: DFF port map (D3,CLK,Q3,Q3N);
G5: Nand2 port map (X,Q3,A5);
G6: Nand2 port map (XN,Q3N,A6);
G7: Nand2 port map (A5,A6,72);

end Structure

Simulation of the Structural Model

Simulation command file:

wave CLK X Q1 Q2 Q3 Z2
force CLK 0 0, 1 100 -repeat 200
force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350

run 1600

Waveforms:

qly | | |

lq2 | | | L

/q3 | | | | | L
'zl L l 1 M l LJ L

0 500 1000 1500

ROM

ROM 8x16 example (1)

ROM 8x16 example (2)

LIBRARY ieee;
USE ieee.std logic_1164.all;
USE ieee.numeric_std.all;

ENTITY rom IS

PORT (
Addr : IN STD_LOGIC_VECTOR(2 DOWNTO 0):

Dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

END rom;

ROM 8x16 example (3)

ARCHITECTURE dataflow OF rom IS
SIGNAL temp: INTEGER RANGE 0 TO 7;
TYPE vector_array IS ARRAY (0to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);
CONSTANT memory : vector_array .=
(X"800A",
X"D459",
X"A870",
X"7853",
X"650D",
X"642F",
X"F742",
X"F548");
BEGIN

temp <=to_integer(unsigned(Addr));
Dout <= memory(temp);

END dataflow:;

ROM 8x16 example (4)

ARCHITECTURE dataflow OF rom IS

TYPE vector_array IS ARRAY (0to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

(X"800A",

X"D459",
X"A870",
X"7853",
X"650D",
X"642F",
X"F742",
X"F548");

BEGIN

Dout <= memory(to_integer(unsigned(Addr)));

END dataflow:;

