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VHDL In a Glance

Part 1:
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VHDL Program Structure

 Every VHDL program consists of two main 

parts: 

 Entity

 Architecture

 Entity describes Inputs and outputs of a 

design

 Architecture describes functionality of a 

design

4
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VHDL Program Structure
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and ASIC Design with 

VHDL Program Structure Example

ENTITY AndOrGates IS

PORT ( A, B, D : IN BIT;

E : OUT BIT) ;

END AndOrGates;

ARCHITECTURE dataflow OF AndOrGates IS

SIGNAL C:   BIT;

BEGIN

C  <=  A  AND B;

E  <=  C  OR D;

END dataflow ;

target_signal <= expression;

<=

• Concurrent signal assignment

• Data-flow VHDL Example: 
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VHDL Description of 

Combinational Networks
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Data-Flow VHDL

• simple concurrent signal assignment      

()

• conditional concurrent signal assignment

(when-else)

• selected concurrent signal assignment

(with-select-when)

Concurrent Statements
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and ASIC Design with 

Gates
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and ASIC Design with 

Logic Operators

 Logic operators

 Logic operators precedence

and   or   nand   nor   xor   not   xnor

not

and   or   nand   nor   xor   xnor

Highest

Lowest

only in VHDL-93
and above
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(a) AND gates 

(b) OR gates

x x 

(c) NOT gate

Basic Gates – AND, OR, NOT

. . .
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(a) NAND gates

(b) NOR gates 

Basic Gates – NAND, NOR

…
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x 
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x 1 x 2 1 x 2 + = (a) 

x 1 x 2 + x 1 x 2 = (b) 

DeMorgan’s Theorem and other symbols 
for NAND, NOR
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Basic Gates – XOR

(b) Graphical symbol(a) Truth table 

0 

0 

1 

1 

0 

1 

0 

1 
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0 

x 1 x 2 

x 1 

x 2 

f x 1 x 2 = 

f x 1 x 2 = 

(c) Sum-of-products implementation

f x 1 x 2 = 

x 1 

x 2 
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Basic Gates – XNOR

(b) Graphical symbol(a) Truth table 
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x 1 x 2 

x 1 

x 2 

f x 1 x 2 = 

f x 1 x 2 = 

(c) Sum-of-products implementation

f x 1 x 2 = 

x 1 

x 2 

x 1 x 2 = .
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Data-flow VHDL Example: Full Adder

x

y

cin

s

cout
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and ASIC Design with 

Data-flow VHDL Example: Full Adder

ENTITY fulladder IS

PORT ( x : IN BIT;

y : IN BIT; 

cin : IN BIT;

s : OUT BIT; 

cout : OUT BIT) ;

END fulladder ;

ARCHITECTURE dataflow OF fulladder IS

BEGIN

s       <=   x XOR y XOR cin ;

cout  <=  (x AND y) OR (cin AND x) OR (cin AND y) ;

END dataflow ;
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Entity-Architecture Pair

Full Adder Example
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4-bit Adder
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4-bit Adder (cont’d)
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Conditional concurrent signal assignment

target_signal <= value1 when condition1 else

value2 when condition2 else

. . .

valueN-1 when conditionN-1 else

valueN;

When - Else
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2-to-1 Multiplexer

(a) Graphical symbol (b) Truth table

0

1

fs

w
0

w
1

f

s

w
0

w
1

0

1

VHDL:   f <= w1 WHEN s = '1' ELSE w0 ;

or

f <= w0 WHEN s = '0' ELSE w1 ; 
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Cascade of two multiplexers

s1

w
3

w
1

0

1

s2

w
2

0

1 y

y <= w1  WHEN s1 = '1' ELSE 

w2  WHEN s2 =  '1' ELSE

w3 ;

VHDL:
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Selected concurrent signal assignment

with choice_expression select

target_signal <= expression1 when choices_1,

expression2 when choices_2,

. . .

expressionN when choices_N;

With –Select-When
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(b) Truth table 
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(a) Graphic symbol 

4-to-1 Multiplexer

WITH s SELECT

f <= w3WHEN “11",

w2 WHEN "10",

w1 WHEN "01",

w0 WHEN OTHERS ;

s

s <= s1 &  s0;
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and ASIC Design with 

Process
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Process

• Contain sequential statements that define 
algorithms

• Executed when one of the signals in the 
sensitivity list has an event

proc1: process (a,b,c)

begin

x<=a and b and c;

end process proc1;

proc2: process

begin

x<=a and b and c;

wait on a,b,c;

end process proc2;
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Modeling Flip-Flops Using VHDL 

Processes

 Whenever one of the signals in the sensitivity list 

changes, the sequential statements are executed 

in sequence one time 

General form of process
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Sequential Style Syntax

• Assignments are executed sequentially inside 

processes.
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Sequential Statements

• {Signal, Variable} assignments

• Flow control

• if <condition> then <statments>

[elsif <condition> then <statments>]

else <statements>

end if;

• for <range> loop <statments> end loop;

• while <condition> loop <statments> end loop;

• case <condition> is

when <value> => <statements>;

when <value> => <statements>;

when others => <statements>;

• Wait on <signal> until <expression> for <time>;
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Wait Statements

 Wait on an alternative to a sensitivity list

 Note: a process cannot have both wait 

statement(s)

and a sensitivity list

 Generic form of a process with wait 

statement(s)

process

begin

sequential-statements

wait statement

sequential-statements

wait-statement

...

end process;

How wait statements work?

• Execute seq. statement until 

a wait statement is encountered.

• Wait until the specified condition is satisfied.

• Then execute the next 

set of sequential statements until 

the next wait statement is encountered.

• ...

• When the end of the process is reached start over again 

at the beginning.
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Forms of Wait Statements

 Wait on 

 until one of the signals in 

the sensitivity list 

changes

 Wait for

 waits until the time 

specified by the time 

expression has elapsed

 What is this:
wait for 0 ns;

 Wait until

 the boolean expression is 

evaluated whenever one 

of the signals in the 

expression changes, and 

the process continues 

execution when the 

expression evaluates to 

TRUE

wait on sensitivity-list;

wait for time-expression;

wait until boolean-expression;
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If statement: examples

if sel = ‘0’ then
result <= input_0; -- executed if sel = 0

else
result <= input_1; -- executed if sel /= 0

end if;

if sel = ‘0’ then
result <= input_0; -- executed if sel = 0

elsif sel = 1 then
result <= input_1; -- executed if sel = 1

else
result <= input_2; -- executed if sel /= 0, 1

end if;
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2-to-1 Multiplexer

(a) Graphical symbol (b) Truth table

0

1

fs

w
0

w
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f

s

w
0

w
1

0

1

if sel = ‘1’ then
f <= w1;

else
f <= w0; 

end if;
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Case statement: examples
type opcodes is (nop, add, sub);
case opcode is

when add => acc <= acc + op;
when sub => acc <= acc – op;
when nop => null;

end case;
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(b) Truth table 
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(a) Graphic symbol 

4-to-1 Multiplexer

s <= s1 &  s0;

CASE s IS

WHEN “11" => f <= w3;

WHEN "10" => f <= w2;

WHEN "01" => f <= w1;

WHEN OTHERS => f <= w0;

s
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Case statement: rules

• all possible values of the selector expression must 
be covered,

• each possible value must be covered by one and

only one choice,

• the choice values must be locally static, that is known

at analysis stage, and

• if the others choice is used, it must be the last 

alternative and the only choice in the alternative.
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Registers



VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA 
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Clk D 




0 
1 

0 
1 

Truth table 

t 1 t 2 t 3 t 4 

Time

Clock 

D 

Q 

Timing diagram

Q(t+1)

Q(t)

D Q 

Clock 

Graphical symbol

0 –

Q(t)1 –

Edge-Trigger Register 
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ENTITY EdgeReg IS 

PORT ( D, Clock : IN BIT ; 

Q : OUT BIT) ; 

END EdgeReg ;

ARCHITECTURE behavioral OF EdgeReg IS    

BEGIN

PROCESS ( Clock ) 

BEGIN 

IF Clock'EVENT AND Clock = '1' THEN 

Q <= D ; 

END IF ; 

END PROCESS ; 

END behavioral ;

Edge-Trigger Register: Another Edge definition

D Q 

Clock 



VLSI Design Course VHDL ReviewSemnan University ECE 448 – FPGA 

and ASIC Design with 

ENTITY EdgeReg IS 

PORT ( D, Clock : IN BIT ; 

Q : OUT BIT) ; 

END EdgeReg ;

ARCHITECTURE behavioral2 OF EdgeReg IS    

BEGIN

PROCESS ( Clock ) 

BEGIN 

IF rising_edge(Clock) THEN 

Q <= D ; 

END IF ; 

END PROCESS ; 

END behavioral2;

D Q 

Clock 

Edge-Trigger Register: VHDL Code 

- rising_edge() is only in VHDL-93 and above
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Clock D 

0 
1 
1 

–
0 
1 

0 
1 

Truth table Graphical symbol

t 1 t 2 t 3 t 4 

Time

Clock 

D 

Q 

Timing diagram

Q(t+1)

Q(t)

D latch

D Q 

Clock 
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ENTITY latch IS 

PORT ( D, Clock : IN BIT; 

Q : OUT BIT) ; 

END latch ;

ARCHITECTURE behavioral OF latch IS    

BEGIN

PROCESS ( D, Clock ) 

BEGIN

IF Clock = '1' THEN

Q <= D ; 

END IF ; 

END PROCESS ; 

END behavioral;

D latch

D Q 

Clock 
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ENTITY Reg_ar IS 

PORT ( D, Reset, Clock : IN ; BIT 

Q : OUT BIT) ; 

END Reg_ar ;

ARCHITECTURE behavioral OF Reg_ar IS    

BEGIN

PROCESS ( Reset, Clock ) 

BEGIN 

IF Reset = '1' THEN 

Q <= '0' ; 

ELSIF rising_edge(Clock) THEN 

Q <= D ; 

END IF ; 

END PROCESS ;

END behavioral ;

Edge-Trigger Reg. with asynchronous reset

D Q 

Clock 

Reset
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Synthesis
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Synthesis

 Synthesis converts a high level VHDL description code 

into the gate level netlist (contains gates and their 

interconnections), it is usually with the help of synthesis 

tools. 

 For VHDL, 

 only a subset of the language is synthesizable,

 and different tools support different subsets.

 RTL style code is encouraged because it is 

synthesizable.

 In RTL, it is possible to split the code into two blocks 

that contain:

 either purely combinational logic 

 or sequential block (e.g. process) for register, FSM, 

‘’’
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Synthesis Inpus and Outputs

 Synthesis Inputs:

 VHDL Code Design

 Constraints

 Technology Library

 Synthesis Output:

 Gates and their interconnections

z For simulation, we can use the unsynthesizable VHDL or 

Verilog code in the test bench to generate the stimulus.

48
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std_logic Type
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Example VHDL Code
 3 sections to a piece of VHDL code

 File extension for a VHDL file is .vhd

 Name of the file should be the same as the entity name 
(nand_gate.vhd) [OpenCores Coding Guidelines]

LIBRARY DECLARATION

ENTITY DECLARATION

ARCHITECTURE BODY

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY nand_gate IS

PORT(

a   : IN STD_LOGIC;

b   : IN STD_LOGIC;

z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE model OF nand_gate IS

BEGIN

z <= a NAND b;

END model;
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IEEE 1164 Standard Logic

 std_logic type: a 9-valued logic system

 ‘U’ – Uninitialized

 ‘X’ – Forcing Unknown

 ‘0’ – Forcing 0

 ‘1’ – Forcing 1

 ‘Z’ – High impedance

 ‘W’ – Weak unknown

 ‘L’ – Weak 0

 ‘H’ – Weak 1

 ‘-’ – Don’t care

If forcing and weak signal are 

tied together, the forcing signal 

dominates. 

Useful in modeling the internal 

operation of certain types of 

ICs. 

In this course we use a subset 

of the IEEE values: X10Z
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BIT versus STD_LOGIC

 BIT type can only have a value of '0' or '1'

 STD_LOGIC can have nine values

 '0', '1', 'Z', 'U', 'X', 'L', 'H', 'W', '-'

Useful mainly for simulation

 '0', '1', and 'Z' are synthesizable 

(your codes should contain only these 

three values)
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Generic and Generate
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• Generics allow the component to be customized 

upon instantiation.

• Generics pass information from the entity to the 

architecture.

• Common uses of generics

• Customize timing

• Alter range of subtypes

• Change size of arrays

ENTITY adder IS 

GENERIC(n: natural :=2); 

PORT( 

A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);    

B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0); 

C: OUT STD_LOGIC; 

SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0) 

); 

END adder;

Generic Statement
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Generics

• Generics allow the component to be customized 

upon instantiation.

• Generics pass information from the entity to the 

architecture.

• Common uses of generics

• Customize timing

• Alter range of subtypes

• Change size of arrays

entity ADDER is generic(n: natural :=2); port( A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(nentity ADDER is generic(n: natural :=2); port( A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n

ENTITY adder IS 

GENERIC(n: natural :=2); 

PORT( 

A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);    

B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0); 

C: OUT STD_LOGIC; 

SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0) 

); 

END adder;

entity ADDER is generic(n: natural :=2); port( A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(nentity ADDER is generic(n: natural :=2); port( A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n
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A word on generics

 Generics are typically integer values

 In this class, the entity inputs and outputs should be 
std_logic or std_logic_vector

 But the generics can be integer

 Generics are given a default value

 GENERIC ( N : INTEGER := 16 ) ;

 This value can be overwritten when entity is 
instantiated as a component

 Generics are very useful when instantiating an often-used 
component

 Need a 32-bit register in one place, and 16-bit register 
in another

 Can use the same generic code, just configure them 
differently
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Use of OTHERS

OTHERS stand for any index value that has 

not been previously mentioned.

Q <= “00000001” can be written as  Q <= (0 => ‘1’, OTHERS => ‘0’)      

Q <= “10000001” can be written as  Q <= (7 => ‘1’, 0  => ‘1’, OTHERS => ‘0’)

or              Q <= (7 | 0 => ‘1’, OTHERS => ‘0’)

Q <= “00011110” can be written as  Q <= (4 downto 1=> ‘1’, OTHERS => ‘0’)          
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Component Instantiation

in VHDL-87

U1: regn        GENERIC MAP (N => 4)

PORT MAP (D => z ,

Reset => reset ,

Clock => clk,

Q => t );
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U1:  ENTITY work.regn(behavioral)     

GENERIC MAP (N => 4)

PORT MAP (D => z ,

Reset => reset ,

Clock => clk,

Q => t );

Component Instantiation

in VHDL-93
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LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY regne IS

GENERIC ( N : INTEGER := 8 ) ;

PORT ( D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Enable, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0) ) ;

END regne ;

ARCHITECTURE behavioral OF regne IS

BEGIN

PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

IF Enable = '1' THEN

Q <= D ;

END IF ;

END IF;

END PROCESS ;

END behavioral ;

N-bit register with enable

QD

Enable

Clock

regn

N N
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Technology Modeling

• One use of generics is to alter the timing of a certain component.

• It is possible to indicate a generic timing delay and then specify 

the exact delay at instantiation.

• The example above declares the interface to a component 
named inv.

• The propagation time for high-to-low and low-to-high transitions 
can be specified later.
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Structural Statements

• The GENERIC MAP is similar to the PORT MAP in 

that it maps specific values to generics declared in the 

component.
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Generate Statement

• Structural for-loops:  The GENERATE statement

• Some structures in digital hardware are repetitive in nature. 

(RAM, ROM, registers, adders, multipliers, …)

• VHDL provides the GENERATE statement to automatically 

create regular hardware.

• Any VHDL concurrent statement may be included in a 

GENERATE statement, including another GENERATE 

statement.
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Generate Statement Syntax

• All objects created are similar.

• The GENERATE parameter must be discrete and is 

undefined outside the GENERATE statement.
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Example: Array of AND-gates
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Variable & Signal
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Variables

 What are they for: 
Local storage in processes, 
procedures, and functions

 Declaring variables
variable list_of_variable_names : type_name 

[ := initial value ];

• Variables must be declared within the process in 
which they are used and are local to the process
– Note: exception to this is SHARED variables
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Signals

 Signals must be declared outside a process

 Declaration form

signal list_of_signal_names : type_name 

[ := initial value ];

• Declared in an architecture can be used 

anywhere within that architecture
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Constants

 Declaration form
constant constant_name : type_name := constant_value;

• Constants declared at the start of an architecture

can be used anywhere within that architecture

• Constants declared within a process are local

to that process

constant delay1 : time := 5 ns;



VLSI Design Course VHDL ReviewSemnan University 70

Variables vs. Signals

 Variable assignment statement
variable_name := expression;

• Signal assignment statement

signal_name <= expression [after delay];

– expression is evaluated and the variable is 
instantaneously updated
(no delay, not even delta delay)

– expression is evaluated and the signal is scheduled to 
change after delay; if no delay is specified the signal is 
scheduled to be updated after a delta delay
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Variables vs. Signals (cont’d)

Process Using 
Variables

Process Using Signals

Sum = ?

Sum = ?
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Predefined VHDL Types

 Variables, signals, and constants can have any one of the 

predefined VHDL types or they can have a user-defined 

type

 Predefined Types

 bit – {‘0’, ‘1’}

 boolean – {TRUE, FALSE}

 integer – [-231 - 1.. 231 – 1}

 real – floating point number in range –1.0E38 to 

+1.0E38

 character – legal VHDL characters including lower-

uppercase letters, digits, special characters, ...

 time – an integer with units fs, ps, ns, us, ms, sec, min, 

or hr
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User Defined Type

 Common user-defined type is enumerated
type state_type is (S0, S1, S2, S3, S4, S5); 

signal state : state_type := S1;

• If no initialization, the default initialization is the leftmost 

element in the enumeration list (S0 in this example)

• VHDL is strongly typed language =>

signals and variables of different types cannot be 

mixed in the same assignment statement,

and no automatic type conversion is performed
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Arrays

 Example
type SHORT_WORD is array (15 downto 0) of bit; 

signal DATA_WORD : SHORT_WORD;

variable ALT_WORD : SHORT_WORD := “0101010101010101”;

constant ONE_WORD : SHORT_WORD := (others => ‘1’);

• ALT_WORD(0) – rightmost bit

• ALT_WORD(5 downto 0) – low order 6 bits

• General form

type arrayTypeName is array index_range of element_type;

signal arrayName : arrayTypeName [:=InitialValues]; 
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Arrays (cont’d)

 Multidimensional arrays
type matrix4x3 is array (1 to 4, 1 to 3) of integer; 

variable matrixA: matrix4x3 := 

((1,2,3), (4,5,6), (7,8,9), (10,11,12));

• matrixA(3, 2) = ?

• Unconstrained array type
type intvec is array (natural range<>) of integer;  

• range must be specified when the array object is declared

signal intvec5 : intvec(1 to 5) := (3,2,6,8,1);

type matrix is array (natural range<>,natural range<>) 

of integer;  
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Predefined Unconstrained Array Types

 Bit_vector, string

constant A : bit_vector(0 to 5) := “10101”;

-- (‘1’, ‘0’, ‘1’, ‘0’, ‘1’);

• Subtypes 

subtype SHORT_WORD is : bit_vector(15 to 0);

• POSITIVE, NATURAL –

predefined subtypes of type integer

• include a subset of the values specified by the type
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VHDL Operators

1. Binary logical operators: and or nand nor xor xnor

2. Relational: = /= < <= > >=

3. Shift: sll srl sla sra rol ror

4. Adding: + - & (concatenation)

5. Unary sign: + -

6. Multiplying: * / mod rem

7. Miscellaneous: not abs **

• Class 7 has the highest precedence (applied first),

followed by class 6, then class 5, etc
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and ASIC Design with 

Tri-state Buffer entity

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY tri_state IS

PORT ( e:    IN STD_LOGIC;

x:  IN STD_LOGIC;

f: OUT STD_LOGIC

);

END tri_state;

ARCHITECTURE dataflow OF tri_state IS

BEGIN

f <= x WHEN (e = ‘1’) ELSE   ‘Z’;

END dataflow;
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and ASIC Design with 

x f 

e 

(b) 

x f 

e 

(a) 

x f 

e 

(c) 

x f 

e 

(d) 

Four types of Tri-state Buffers

f <= x WHEN (e = '1') ELSE   'Z';

f <= x WHEN (e = '0') ELSE   'Z';

f <= not x WHEN (e = '1') ELSE   'Z';

f <= not x WHEN (e = '0') ELSE   'Z';
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and ASIC Design with 

2-to-4 Decoder
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Enw <= En & w ;

WITH Enw SELECT

y <= "0001" WHEN "100",

"0010" WHEN "101",

"0100" WHEN "110",

"1000" WHEN "111",

"0000" WHEN OTHERS ;
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and ASIC Design with 

VHDL code for a 2-to-4 Decoder entity

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY dec2to4 IS
PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;
y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ;

END dec2to4 ;

ARCHITECTURE dataflow OF dec2to4 IS
SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ;

BEGIN
Enw <= En & w ;

WITH Enw SELECT

y <= "0001" WHEN "100",

"0010" WHEN "101",

"0100" WHEN "110",

"1000" WHEN "111",

"0000" WHEN OTHERS ;

END dataflow ;
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and ASIC Design with 

Priority Encoder
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y <= "11" WHEN w(3) = '1' ELSE 

"10" WHEN w(2) = '1' ELSE

"01" WHEN w(1) = '1' ELSE

"00" ;

z <= '0' WHEN w = "0000" ELSE '1' ;
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and ASIC Design with 

VHDL code for a Priority Encoder entity

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY priority IS
PORT ( w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
z : OUT STD_LOGIC ) ;

END priority ;

ARCHITECTURE dataflow OF priority IS
BEGIN

y <= "11" WHEN w(3) = '1' ELSE 

"10" WHEN w(2) = '1' ELSE

"01" WHEN w(1) = '1' ELSE

"00" ;

z <= '0' WHEN w = "0000" ELSE '1' ;

END dataflow ;
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Delay Types

 All VHDL signal assignment statements 

prescribe an amount of time that must 

transpire before the signal assumes its new 

value

 This prescribed delay can be in one of three 

forms:
 Transport -- prescribes propagation delay only

 Inertial -- prescribes propagation delay and minimum input pulse 

width

 Delta -- the default if no delay time is explicitly specified

Input

delay

Output
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Transport Delay

 Transport delay must be explicitly specified

 I.e. keyword “TRANSPORT” must be used

 Signal will assume its new value 

after specified delay

Input Output

0      5     10   15    20   25   30    35

Input

Output

-- TRANSPORT delay example

Output <= TRANSPORT NOT Input AFTER 10 ns;
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Inertial Delay

 Provides for specification propagation delay and input pulse 

width, i.e. ‘inertia’ of output:

 Inertial delay is default and REJECT is optional:

Input

Output

0      5    10    15   20    25    30   35

Input Output

target <= [REJECT time_expression] INERTIAL waveform;

Output <= NOT Input AFTER 10 ns;

-- Propagation delay and minimum pulse width are 10ns
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Inertial Delay (cont.)

 Example of gate with ‘inertia’ smaller than 
propagation delay
 e.g. Inverter with propagation delay of 10ns which 

suppresses pulses shorter than 5ns

 Note: the REJECT feature is new 
to VHDL 1076-1993

Input

Output

0      5    10    15    20    25   30    35

Output <=  REJECT 5ns INERTIAL NOT Input AFTER 10ns;
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Delta Delay
 Default signal assignment propagation delay 

if no delay is explicitly prescribed

 VHDL signal assignments do not take place 

immediately

 Delta is an infinitesimal VHDL time unit so that all 

signal assignments can result in signals assuming 

their values at a future time

 E.g.

 Supports a model of concurrent VHDL 

process execution

 Order in which processes are executed by 

simulator does not affect simulation output

Output <= NOT Input;

-- Output assumes new value in one delta cycle
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Example – Delta Delay
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Simulation Example
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Problem #1

 Using the labels, 

list the order in 

which the 

following signal 

assignments are 

evaluated if in2 

changes from a 

'0' to a '1'.  

Assume in1 has 

been a '1' and 

in2 has been a 

'0' for a long 

time, and then at 

time t in2 

changes from a 

'0' to a '1'.

entity not_another_prob is

port (in1, in2: in bit;

a: out bit);

end not_another_prob;

architecture oh_behave of not_another_prob is

signal b, c, d, e, f: bit;

begin

L1:  d <= not(in1);

L2:  c<= not(in2);

L3:  f <= (d and in2) ; 

L4:  e <= (c and in1) ;

L5:  a <= not b;

L6:  b <= e or f;

end oh_behave;
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Problem #2

 Under what conditions do the two assignments below 

result in the same behavior? Different behavior? Draw 

waveforms to support your answers.

out <= reject 5 ns inertial (not a) after 20 ns;

out <= transport (not a) after 20 ns;
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Modeling a Sequential Machine

Mealy Machine for 

8421 BCD to 8421 BCD + 3 bit serial converter

How to model this in VHDL?
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Behavioral VHDL Model

Two processes: 

• the first represents the 

combinational network;

• the second represents 

the state register
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Simulation of the VHDL Model

Simulation command file:

Waveforms:
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Sequential Machine Model 

Using State Table
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Dataflow VHDL Model
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Structural Model

Package bit_pack is a part of library BITLIB –

includes gates, flip-flops, counters

(See Appendix B for details)
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Simulation of the Structural Model
Simulation command file:

Waveforms:
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ROM
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3

16

Addr

C

8x16
ROM

Dout

ROM 8x16 example (1)
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ROM 8x16 example (2)

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY rom IS

PORT (

Addr : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

Dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END rom;
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ARCHITECTURE dataflow OF rom IS

SIGNAL temp: INTEGER RANGE 0 TO 7;

TYPE vector_array IS ARRAY (0 to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

( X”800A",

X"D459",

X"A870",

X"7853",

X"650D",

X"642F",

X"F742",

X"F548");

BEGIN

temp <= to_integer(unsigned(Addr));

Dout <= memory(temp);

END dataflow;

ROM 8x16 example (3)
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ARCHITECTURE dataflow OF rom IS

TYPE vector_array IS ARRAY (0 to 7) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

CONSTANT memory : vector_array :=

( X"800A",

X"D459",

X"A870",

X"7853",

X"650D",

X"642F",

X"F742",

X"F548");

BEGIN

Dout <= memory(to_integer(unsigned(Addr)));

END dataflow;

ROM 8x16 example (4)


